STATEMENT OF TASK

An automobile company produces three types of cars C_1 , C_2 and C_3 using three types of steel S_1 , S_2 and S_3 . The steel requirement (in tons) for each type of car is given below:

Type of steel	Cars			
	C_1	<i>C</i> ₂	<i>C</i> ₃	Supplies of steel
<i>S</i> ₁	2	3	4	29
<i>S</i> ₂	1	1	2	13
S ₃	3	2	1	16

Determine the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.

Let's create *the mathematical model*.

Let x_1 , x_2 and x_3 denote the number of cars that can be produced of each type. Then we have

$$S_1: 2x_1 + 3x_2 + 4x_3 = 29$$

$$S_2: x_1 + x_2 + 2x_3 = 13$$

$$S_3: 3x_1 + 2x_2 + x_3 = 16$$

Then get the system of equations:

$$\begin{cases} 2x_1 + 3x_2 + 4x_3 = 29\\ x_1 + x_2 + 2x_3 = 13\\ 3x_1 + 2x_2 + x_3 = 16 \end{cases}$$