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Introduction

Differential calculus plays a very important role in economics in particu-
lar in problems concerning the optimum, management and plans. Therefore
the deep knowledge of this section of higher and applied mathematics is ne-
cessary for modern economists.

In the guidelines, only the most principal topics of differential calculus
are stated in brief.

The present guidelines are the continuation of the part where notions of
limits and continuity of functions had been regarded. By means of these no-
tions we can introduce the notions of the derivative and the differential of the
function which are some of the most fundamental in mathematics.

Guidelines for Differential Calculus of
the Function of Several Variables

1. General Information. The Domain of the Definition, the Limit
and the Continuity of the Function of Several Variables

First of all it should be stressed that in order to better understand the
notions connected with functions of several or many variables it is necessary
to have deep knowledge of the principles of the function of one variable.

The definition of the function of several variables was given in the text-
book “Introduction to Analysis”, therefore we don’t find it necessary to repeat
it.

We begin with the domain of the definition and the range of such a
function.

Definition 1. The set A of points x:(xl, Xoy X3y ery Xn) for which the
function f(xl, Xy X3y een, xn) is defined is called the domain of the definition
of the function y= f(xl, X5, X3,...,xn), while the set B of values Yy is
termed the range of the function y. The domain of the definition and the
range is denoted as D(f) and E( f ) respectively.

Now let us pay our attention to the function of two variables z = f(x, y)
because it has a simple geometrical meaning and it is the basis for studying



the functions of three and more variables.

2. Geometrical interpretation of the function of two variables

Geometrically the equation z = f(x, y) defines some surface. A pair of
values of X and Yy defines a point P(x, y) in the plane xQy, (in Cartesian
coordinates), and Z = f(x, y), the z-coordinate of the corresponding point
M(X, Y, Z) on the surface. Therefore, we say that z is the function of the
point P(x, y) and we write z = f (P).

It should be noted that the function z = f(x, y) can also be written in

the form F(x, Y, Z):O and it usually specifies each of the variables X, Yy, z

involved as an implicit function of the other two variables.
It should also be noted there is no geometrical interpretation for the
function of three and more variables.

The domain of the definition of the function z = f(x, y) is usually a part
of the XOy-plane bounded by one or several lines. Let us consider the follow-

ing examples.
Example 1. Indicate the domain of the definition of the function

Z= In(x2 + y2 —rz).

2 4 y2 —r?>0. Therefore, the

domain of the definition is the set of points, whose coordinates satisfy the

Solution. This function exists when X

condition X% + y2 > r? that is the exterior of the circle (Fig. 1).
Example 2. Consider the domain of the definition of the function

S 1
\/rz_xz_yz'

2

—x% - y2 > (0. Therefore, the

domain of the definition is the set of points, whose coordinates satisfy the
2

Solution. This function exists when r

condition X~ + y2 < r? that is the interior of the circle (Fig. 2).
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Fig. 1. The domain of the definition  Fig. 2. The domain of the definition
(the exterior of the circle) (the interior of the circle)

The notion of the limit of the function of two variables is formulated in
the following way.

Definition 2. The number A is called the limit of the function
Z= f(x, y) as X —> xp, Y — Ypif for all the values of X and y which are, re-

spectively, sufficiently close to the numbers X, and Y,y the corresponding

values of the function z = f(x, y) are arbitrarily close to the number A. It is
denoted as

lim f(x,y)=A.
X—=>X0
Y—Yo

This definition can be restated in terms of inequalities: given an arbi-
trary ¢ >0, there exists a number 6 >0 so that for all the points P(X, y)
whose coordinates satisfy the inequality

0<(x=x ¥ +(y-yg)* <% or 0<\/(X—X0)2+( y=Yo) <3,

or 0<+/Ax* +Ay? <& (that is for all points P(X, y)# Py(Xg, Yo ) belonging
to the & -neighborhood of the point Py) the inequality | (x, y)— Al < & is ful-



filled, the number A is the limit of the function f(x, y) as X —>xg, Y Yo-
The notion of the limit is closely connected with the notion of continuity.
Definition 3. The function z = f(x, y) is said to be continuous at the

point (XO, yo) if

lim [f(x, y)- f(x0, Yo)]=00r lim f(x,y)=f(xo, Yo)

X—>Xg X—=Xp
Y—Yo Y—Yo

or its limit at the point coincides with a particular value of the function at this
point, the converse is also true.

3. Total and Partial Increments. Partial Derivatives.
A Sufficient Condition for Differentiability

The notions of the limit and the continuity make it possible to approach
the notion of differentiability of the function of several variables. For this pur-
pose let us define the total increment of the function of two variables. In the
general case the increment of the function is given by the formula

z=f(x+Ax, y+Ay)-f(x y),

where AX and Ay are the increments of the variables x and y. And

the function z = f(x, y) is continuous at the point (XO, yo) if

im Az= lim [f(xy+AX, Yo +Ay)- f(Xg, ¥o)]=0.
AX—0 AX—0
Ay—0 Ay—0

It should be noted that this formula can serve as another definition of the con-

tinuity of the function at the given point.
The partial increments are denoted by the symbols

Ayz=f(x+Axy)-f(x,y) and Ayz="f(x, y+Ay)-f(x,y)

which are the increments of the function with respect to the corresponding
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variables X and V.

Now we can pass to the notion of partial derivatives.

Let z= f(x, y) be a function of two independent variables X and VY.
We begin with fixing a constant value of the argument y and investigating the

function of one variable X. Suppose that the function possesses the deriva-
tive with respect to X, this derivative is equal to

i f(x+Ax y)-fxy) _ o
AX—0 AX

We will denote this limit as f, where the subscript indicates the variable
X with respect to which the derivative is taken for a fixed value of V.

Definition 4. The partial derivative of the function z = f(x, y) with re-
spect to X is the function of the two variables X and Yy appearing when

f(x, y) is differentiated with respect to X on condition that Yy is regarded as

a constant.

, of(x,y) kel

0z
The symbols —, z,, , f (X, are also used for the nota-
Y ox X o ax[ (x.y)

tion of the partial derivative.
The partial derivative of the function z = f(x, y) with respect to Y is
defined completely analogically

lim f(X, y+Ay)— f(X' y): f);
Ay—0 Ay

L oz , of(x, 15
and it is also denoted —, 7, (—y) —[f(x, y)]
oy oy oy
At last the partial derivatives for the function of three and more va-
riables are defined in a similar way.
Example 3. Find the partial derivatives for the function z =e* cosy.
Solution. For the partial derivative z; we suppose that Yy is a constant

then COS Y is a constant too. Hence we write

11



Analogically for Zg/ we have
0z X ) X ! X o
—=(e cosy), =e*(cosy), =—esiny.

Example 4. Find the partial derivatives for the function
u= In(x2 + y2 + 22),
where u(x, Y, z) is the function of the three variables.

Solution. Successively supposing Yy and z, X and Z and X and Yy are
the constant values we get:

%:(In( 2+y2+22))X=X2+§)2(+22;
bl
Z—lzjz(ln( 2+y2+22))zzxz+§§+22.

The geometrical meaning of the partial derivatives of the function
z=f(x,y) is the following: f'(Xy, Yg) is equal to the slope, relative to Ox,

of the tangent line to the section of the surface 7= f(x, y) by the plane
y =Y, drawn through the point Mg(Xg, Yo, Zp), that is fi(x, y)=tge
(Fig. 3). It is similar for f;(x, y) . Now we can formulate the sufficient condi-
tion for differentiability of the function f(x)= f(X;, X5, X3, ..., X, ) of sev-

eral variables.
Definition 5. If partial derivatives 6f(x)/6xi are defined in some

12



neighborhood of the point X and are continuous at the point
x= (Xl, X,y eeny Xn) itself, then the function f(x) is differentiable at this point.

The function differentiable at each point of the domain of its definition is said
to be differentiable in that domain.

The function z = f(x, y) is said to be continuous at the point (Xg, Y ) if

X

Fig. 3. A tangent line to the section of the surface z = f(x, y)
by the plane y =Y, drawn through the point Mo(xo, Yo ZO)

4. Total and Partial Differentials.
Applying the Total Differential to Approximate Calculation

We begin with the second definition for differentiation of the function of
two variables.

Definition 6. The function z = f(x, y) is said to be differentiable at a
given point (X, y) if its total increment is represented in the form

Az =AAX+BAy+e¢, where ¢ :o(p) is an infinitesimal relative to o, and

p=+AX? +Ay? | coefficients Az% and B:% are independent of AX
X
and Ay.

Now we can give a definition of the total differential of a function.

13



Definition 7. The principal part of the total increment of a differentiable
function which is a linear function of the increment of the independent va-

0z oz
riables is called the differential of the function dZ = & AX+—Ay.

We can see that the total differential of the function of two independent
variables is equal to the sum of the products of the partial derivatives of the
function by the differentials of the corresponding independent variables.
These products are called partial differentials and denoted as

1514 0z
dXZ:&AX and dyzzaAy
If AX=dx and Ay =dy, then
0Z 0z
d,z=—dx, d,z=-—dy,
X ox y oy y

oz oz
dz=dyz+d,z :&dx+5dy.

For the function U= f(x)= f (X, X, X3, ..., X, ) of several variables the
total differential is equal to

A total differential is often used for approximate calculations of a func-
tion. For instance it is required to compute the function z = f(x, y) at the

point (X+AX, Y +Ay), i. e. Z(X+AX, Y+ Ay). It is now
Az=f(X+AX,y+Ay)-f(X,y),

whence T(X+AX,y+Ay)=f(X,y)+Az.
If we suppose that Az ~ dz, then

14



f(X+AX,y+Ay)= f(X,y)+dz= f(x,y)+ﬂdx+@dy.
OX oy

So we obtain the formula for computing the function Z(x +AX, Y+ Ay). This
formula is valid for small Ax =dx and Ay =dy.
Example 5. Find the total differential of the following functions:

1) z=x%y; 2) z=+X*+Vy>.

Solution. Let us find partial derivatives for the first function, then

Z
—=2Xy, —= X*, and the total differential has the form
OX oy

dz = 2xydx + x°dy.

For the second function

0z X oz

o___ X o ¥y
X JX+y? Oy X4y

Then its total differential is written as

(xdx+ ydy).

X
- X gx+—Y
«/x2+y2 w/x +y° Y= «/

Example 6. Calculate approximately the value (1.04)2'02 :
Solution. Let

f(x+Ax, y+Ay)=(x+Ax)" ™,

where X+Ax=1+0.04, y+Ay=2+0.02 that is Ax=dx=0.04,
x=1, Ay=dy=0.02, y=2 and z= f(x, y): xY =12 =1. Computing
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of of
and using the relation f(X+AX,y+Ay)= f(X,Y)+&dX+5dy we ob-

tain
(1.04)>% ~1+2-0.04+0-0.02 =1+0.08 =1.08.

5. Differentiating Composite Functions

Let us suppose that z is a composite function of two independent va-
riables X and Yy, thatis, z= f(u, V), where U :go(x, y) and v =/(Xx, y) are
intermediate arguments. Thus

z=T(o(x,y)w(xy))=F(xy).

We also suppose that all the functions involved possess continuous partial
derivatives and therefore are differentiable.

. 0z .
To find z}, =8_ we must consider Yy constant, and then u and Vv be-
X

come functions of only one variable X, therefore we arrive to the formula
which we represent without a proof

0z 0z ou 0z ov . 0z 07z ou O oV
= —+—— and, similarly —= —+

OX AU X OV OX oy oudy ovaoy

Hence, we can derive the following rule.

Rule. A partial derivative of a composite function is equal the sum of the
products of the derivatives of the given function with respect to the inter-
mediate arguments (i. e. U and V) by the partial derivatives of these argu-
ments with respect to the corresponding independent variable (X or Yy).

This rule applies to functions of any number of independent variables
and any number of intermediate arguments.
Let Z be defined as a function of arguments U, Vv, ...,w which are func-

16



tions of independent variables X, V,...,t. Then

0z 0z ou 82 8v+ +g@
oX U Ox av ox oW ox
62 62 6u az 8v +@@
8y 8u ay 8vay ........... w ay’
0z 07 ou 07 oV 07 OW
— = e — — H +— —.
ot ou ot ov ot ow ot

In a particular case the arguments U, V,...,w may be functions of one

independent variable, say, X. This means, that, ultimately, z is a function
dependent solely on X. In this case its ordinary derivative (called a total de-
rivative) is expressed by the formula:

dz 82 du 62 dv N 0z dw

dx  ou dx 8vdx ow dx

If X coincides with one of the arguments U, V,...,w for definiteness, X =U,
the latter formula yields:

dz 82 az dv N 0z dw

— + _—
dx  ox avdx ow dx

Let us consider the following examples.
Example 7. Find the derivative of

7 =ue",

where U =sin X, V=COSX.
Solution. Using the formula for the derivative of the composite function

az du +8z dv
“oudx  ovdx

17



we obtain

dz :
0 2ue" cos x+u2e"(—sin x).
X

Substituting the function U and Vv in terms of X into the expression of

A
— we have
dx
dz : :
W =e***(2sinxcos x —sin® x ) =e“** sinx( 2cos x — sin® x).
X

Example 8. Find the partial derivatives of the function

z=Inue’,
where U=Sin X+COSY, V=Sin X—COSY.

Solution. Applying the formulas for partial derivatives of the composite
function

az azau 8zav 82 628u 8zav
X 0u ox av8x 8y 6uay 8v6y

and considering that

ou ou : ov ou .
~— =C0SX; — =—-SiNYy; — =COSX; — =Sin y;
OX oy OX oy
oz e oz v
—=—; —=Inue’,
ou u ov
we can write
oz e’ v oz e, . Vo
— =--cosx+Inue'cosx; —=-—(-siny)+Inue’siny.
ox u oy u

18



Finally, substituting u and Vv in terms of X and Yy, we obtain

oz COS X in x— : in x—
—=— %70 1 cos xIn(sin x+cos y)e>" ¥ ;
OX SIN X+CoSYy

oz siny

= — %" *7C9Y 4 sin yIn(sin x +cos y e ¥ %Y.
oy sIinx+cosy

6. Differentiating Implicit Functions

Let the function F(X, y) be such that the equation F(x, y)=0 speci-
fies y as the function of X: y:(p(x). The substitution of the function go(x)
for y into this equation leads to the identity F(x, go(x)):O. It follows that the

derivative of the function F(X, y) (where y:go(x)) with respect to X is also

identically zero.
On differentiating this expression according to the differentiation rule for
a composite function we find:

F)é +F'ﬂ=0,whence y’:ﬂ:_i.

y 1
dx dx Fy
This formula expresses the derivative of the implicit function y = go(x) in
terms of the partial derivatives of the given function F(x, y). The derivative

y' does not exist at the point (X, y) for which Fy =0.
In the general case the equation of the form F(X, Y, Z, ..ot u): 0 spe-

cifies U as a function of X, Y, z,...,t. By analogy with the foregoing case we
find:

u_ F. o F au R
i v i

Example 9. Find the derivative of X%+ y2 =a”.
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Solution. Let us differentiate this relation with respect to X, considering
y =@(X). Then 2x+2yy' =0, whence y' =—x/y.

7. Directional Derivative. Gradient

In order to study the notion of the directional derivative it is convenient
to interpret this derivative as the rate of change of the function u = f(x, Y, Z)

at the given point (X, Y, Z) in the direction of the axis |. The direction of the
axis | is given by the unit vector |y which forms the angles «, # and y with

corresponding axes of coordinates, i. e. Ox, Oy and Oz. The computation of
the directional derivative is based on the following formula:

ou ou ou ou
— =—C0Sa+—C0s f+—COoSy,
ol ox oy 0z
where COSc, COS 8 and COSy are the direction cosines and simulta-
neously the coordinates of the unit vector FO.

For the function z= f(x, y) of two variables cosy=0 and
CoS S =sin «. Then

0L 0z oz .
—=—CO0Sa+—SIn .
ol ox

The directional derivative can be considered as the original generaliza-
tion of the partial derivatives.

Indeed, if a =0, f=y :%, then the direction of the axis | coincides

ou ou

with Ox-axis and a=& Analogously, if a:y:%, £ =0, then
M _ N ndfora=p= and y =0, then =
i ay,an ora—,B—Zan y =0, then a2z

The notion of the gradient of the function is closely connected with the
directional derivative.
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Definition 8. The gradient of the function U= f(x, Y, Z) is the vector

whose projections (coordinates) are the values of the partial derivatives of the
function, that is

ou: Ou- OUr
gradu=—i+—j+—K.
OX oz

It should be stressed that the projections of the gradient depend on the
choice of the point (X, Y, z) and may vary when the coordinates of the point

change.
Using the notion of the gradient we can rewrite the formula for the direc-
tional derivative in the form

ou =
—=grad u-l,.
Py g 0

Consequently, the derivative of the function in a given direction is equal
to the scalar product of the gradient of the function by the unit vector in that
direction.

But on the other hand it is obvious that the derivative of a function in a
given direction is equal to the projection of the gradient of the function on the
axis | along which the differentiation is carried out, that is

u_ lgrad ulcos ¢,
ol

where ¢ is the angle between the vector grad u and the axis |

(Fig. 4).
It follows immediately that the directional derivative attains its greatest

value for cosp =1, i. e. for ¢ =0, this greatest value being equal to |grad u|.

: : . au :
Thus grad u is the greatest possible value of the derivative 5 at the given

point P(X, Y, Z), and the direction of the vector grad U coincides with the di-
rection of the axis issued from the point P(X, Y, Z), and the direction of the
vector grad u coincides with the direction of the axis issued from the point
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P(x, Y, Z) along which the rate of change of the function is the greatest, that
is, the direction of the gradient is that of the fasted increase of the function.

grad u

P(x,y, )

v

X

Fig. 4. The angle ¢ between the vector grad u and the axis |

Let us consider the example.

: o . X :
Example 10. Find the derivative of the function z=— at the point

y
M (1, 1) in the direction of the line |: y = x* along the negative semi-axis OX.

- . ..oz
Solution. To compute the derivative 5 we take the formula
0z -
— =grad z-1,,
ol

Z: OL- e : o
where grad z=—1+— j and |, is the unit vector of the direction |.

For the first we find the gradient of the function z at the point M (1, 1)

@
OX

1

=1 g
©1) oy

L) Y

L) Y
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whence grad z=i—j.
In the second place we compute the unit vector FO of the direction |,

i.e. cOSa and sina. Then tana =y, = ZX\(l_ ;) =2, and

COSox =— 1 ——i' Sina = — tana —_i
Ji+tan’a J5' Ji+tan‘a J5
Hence

lo = (cosa;sina)=| - 1, tana :(—i;—ij.
Vi+tanla  1+tana NI

Now we find the scalar product of the vectors grad z and FO.
We obtain

% _grad 2., :(i_](_%j(nzj):%.

8. The extreme of the Function of Two Variable.
Determining the Greatest and the Least Values of the Function

Here we consider only the case of the function of two variables, be-
cause for the function of any number n of independent variables the notion of
then extreme is defined quite similarly.

The definition of the point of the extreme of the function of two variables
is analogous to the corresponding definition for the function of one variable.

Definition 9. The point PO(XO, Yo ) is said to be the point of the extreme
(the point of the maximum or the point of the minimum) of the function
7= f(x, y) if, respectively, f(xo, yo) is the greatest or the least value of the
function f(x, y) in the neighborhood of the point PO(XO, yo).

Now we establish without proof the necessary condition for the function
z= f(x, y) to attain an extreme at the point Py(Xg, Yo ).
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A necessary Condition for the Extremum. If the differentiable func-
tion z = f(X, y) attains an extremum at the point PO(XO, yO) its partial deriva-
tives turn into zero at that point

a
Ox

_n 2z
o IY

(x:xoj _
Y=Yo

It should be stressed that a continuous function of two variables may
have an extreme at a point where it is not differentiable (for instance, such an
extreme may correspond to a cuspidal point of the surface at the graph of the
function).

Such point at which both partial derivatives of a continuous function

7= f(x, y) turn into zero or they don'’t exist are referred to as a stationary or

critical point of the function f(x, y).

But the necessary test for an extreme of a function of two variables es-
tablished above is not sufficient. This means that the fact that the partial de-
rivatives are zero or don'’t exist at a given point does not imply that this point
IS necessarily a point of extreme.

For instance, for the function z =Xy its partial derivatives z; =y and

!

Zy =X are equal to zero at the origin where the function has no extreme.

We must note that sufficient conditions for the extremum for a function
of several independent variables are essentially more complicated than in the
case of a function of one argument.

Here we shall state without proof sufficient conditions for a function of
two independent variables.

Sufficient Conditions for the Extremum of a Function of Two Va-
riables.

Let the function z = f(x, y) be continuous together with its partial de-
rivatives of the first and second orders and let PO(XO, yo) be a stationary
point of the function, that is

@
OX

0z

%) oy

03)
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Let us compute the values of the second derivatives of the function
f(x, y) at the point Py(Xy, Yo) and denote them, for briefness A, B and C:

OX?

0%z
.y B=
%) oxdy

A =X ) 2
foued oy

53
Y=Yo

If AC—B?>0, the function f(x,y) has an extreme at the point
Py(Xo, Yo) Which is a maximum if A<0 and a minimum if A>0 ( the condi-
tion AC—B?>0 implies that A and C are necessarily of one sign).

If AC—B? <0, there is no extreme at the point P (X0, Yo)-

If AC—B?= 0, the properties of the second derivatives don’t provide

any answer to the question of existence of an extreme, and further investiga-
tion is needed.

Example 11. Find the extreme of the function
z=x3y*(a—x—y).
Solution. Rewrite this function in the form:
g — ax3y2 B x4y2 _ X3y3.
Now let us find the first partial derivatives

% = 3ax2y2 —4X3y2 —3x2y3 = x2y2(3a—4x—3y),

% = 2ax’y - 2x*y - 3x°y® = x’y(2a - 2x - 3y).

It is evident that the derivatives turn into zero at the point Py(0, 0). The
next critical point can be found from the system:

Ax+3y =3
{ XY= x—al2, y=al3=PR(al2al3)

2Xx+3y=2a
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To establish the point of the extreme we should find the second derivatives:

2
% = 6axy’ —12x%y* —6xy°> =6xy’(a—2x—Y),
522 3 4 3 3
— =2ax’ —2x" —6x’y =2x°(a—x—-3y),
oy
822 2 3 2.,2 2
=6ax’y —8x’y —9x"y" = x"y(6a-8x—-9y),
oxoy
2 2 2
A:% (p= 0 C:%‘(%):O; B:;@Zy (R~ Y-
Then AC — BZ‘ = 0. But from the form of the function z we can say

Fo
that there is no extreme at the point Py(0, 0) and z(P,)=0.
At the point P(a/2, a/3)

a* 0%z a’

4 2
a 0°z <0,B=——|p= s
oxoy | 12

=——<0,C=—
(R) 9 ay

a0
OX

< 0.

(Pl):_g

Then AC—BZ‘P1=a8/144>O. There is an extreme at the point

R (a/2,a/3). Since A and C are less than zero, then at that point the func-

3 ;2 6
tion z(P,)= % - %(a—%—%) = % has the maximum value.

And now we proceed to determining the greatest and the least values of
the functions of two variables in some closed domain.

Suppose that it is required to determine the greatest and the least val-
ues of the function z = f(x, y) in a closed domain. If one of these values (or

both) is attained inside the domain it must of course be an extreme’s value,
But it may turn out that the greatest or the least value of the function (or both)
Is attained at a point belonging to the boundary of the domain. Therefore, to
determine these values, we have to find a local extreme either at the interior
points of the domain or at the boundary points and compare their magnitudes.
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Example 12. Find the greatest or the least value of the function

z=xy(4-x-y)

in the closed domain, bounded by the lines: x=0; y=0; x+y=6.

Solution. The given domain S is the triangle AOBC, including the
boundary (see Fig. 5).

Fig. 5. The triangle AOBC or the domain S

As we know the continuous function attains the greatest and the least
values either inside the domain or at the boundary points of the domain.

Let us research this function inside the domain. Using the necessary
condition of the extreme of the function of two variables, we obtain:

% =8xy —3x’y — 2xy” = xy(8—3x—2y),
X

oz 2 3 2 2
— =4X° - X" -2Xy=X(4—-x-2y).
oy

Since Xx=0 and y=0 are the boundary points, then the stationary
points can be found from the linear system of the equations:
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3X+2y =8,
{X+ y =>x=2;y=1,M(2;1).

X+2y=4
Now we calculate the value of the function z at that point

2y =27 U4-2-1)=4,

At the boundaries OB and OC of the domain the function z=0. Let us
investigate the behavior of the function at the boundary BC where y =6 —X.

Then

Z=X(6—X)(4—Xx—6+X)=2x*(x—-6)=2x>-12x°,
Z =6X*—24x =6xX(x—4).

Since X#0, then Xx—4=0—>Xx=4 and y=6-x=6-4=2. We
have the stationary point N(4; 2). Compute the value of the function at that
point

2
z\N(4;2) =4°.2(4-4-2)=-64.

Thus z|,, =4 is the greatest value of the function and z|, =64 is the

least value of the function.

We may conclude that the function attains the greatest value inside the
domain and it reaches the least value at the boundary BC of the domain (at
the point N).

Example 13. Find the extreme of the function

z=x*+3xy* —15x—12y.

Solution. Now let us find the first partial derivatives:

a =3x*+3y° —15; a _ 6xy —12.
OX oy
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The next critical points can be found from the system:

{X2+y2:5’:» R(L2); P(2:1); P(-1-2); P(=2-1).
xy—2=0

To establish the point of the extreme we should find the second deriva-
tives:

2 2 2
a—2:6x, 0z =0y, 6—2:6x,
OX oxoy oy

for the point P: A=6; B=12; C=6; AC —B? =36—144 <0 there is
no extreme,

for the point P,: A=12; B=6; C =12; AC —B? =144-36>0 there
is an extreme, Zi, = 2(2;1)=-28,

for the point Py: A=—6; B=-12; C=-6; AC—B*=36-144<0
there is no extreme,

for the point Py: A=-12; B=-6; C=-12; AC- B =144-36>0

there is an extreme, Z;x = 2(—2; —1)=28.

9. A Conditional Extreme

Consider the problem of the extreme of the function of several va-
riables, assuming that these variables are also subject to some constraint eg-
uations. We begin with the case of the function of two variables, because it is
the most simple case.

Suppose it is required to find the extreme of the function z = f(x, y),
where the variables X and Yy are subject to the equation go(x, y):O . The

last equation is called a constraint equation, or, simply a constraint (also a
coupling or a subsidiary condition).
Definition 10. The function z = f(x, y) of two variables is said to have

a conditional or relative maximum (minimum) at the point (XO, yo) satisfying
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the constraint equation go(x, y):O, if the inequality

f(x )< fx0, ¥0)  (F(x y)=f(x0 ¥o))

holds in some neighbourhood of the point (XO, yo) for all the points (X, y) sa-

tisfying the constraint equation go(x, y): 0.

Note that the point of the unconditional extreme is always the point of
the conditional extreme, but the converse is not true: the point of the condi-
tional extreme is not necessarily the point of the ordinary extreme.

If the constraint equation (p(x, y):O admits of the expressions of y as
an explicit function of X, i.e. y = l//(X), we can substitute w(x) for y into the

function z = f(x, y) to obtain the function of one variable

= (% w(x))=F(x).

On finding the values of X for which this function attains an extreme
and determining the corresponding values of y from the equation go(x, y): 0

we obtain the desired points of the conditional extreme.

If the subsidiary condition is expressed by a complicated equation and if
it is impossible to express explicitly one variable in terms of the other one the
problem becomes more difficult. We can somewhat simplify the problem by

considering the derivatives of the functions z = f(x, y) and go(x, y), i e. )
and ¢, , bearing in mind that the variable Y is the function of the variable X
and at the point of the extreme z, =0 and ¢, =0 from the constraint
@(x, y)=0. Then

Z, = % o 8fdy =0 and ¢ =
dx ox 8ydx

dp _0p Opdy _
dx ox oy dx

Consider the method for obtaining the necessary conditions for a condi-
tional extreme, using the so-called Lagrange’s method of multipliers. We mul-

tiply the equality for the derivative ¢ by some multiplier 4 and add together
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the expressions for z;, and ¢; . As a result, we get

of , of dyj+ﬂ(8(p+ﬁqp dyj:0 o

OX 0y dx ox oy dx
ﬂ+/Ia—(0)+ of +/18¢ dy:O.
OX OX oy oy )dx

We choose the multiplier 4 on the condition that at the point of the extreme

wala—qD:O.
o oy

But for these values of X and Y it follows that

ﬂm@—(”:o.
OX OX

Thus, for the points of the extreme we have three equations:

q+}La—¢:0

oy oy

4ﬂ+la—¢—0 (1)
OX OX

o(x, y)=0

with three unknown X, y and 4.

So the necessary conditions for a local conditional extreme of the func-
tion z = f(x, y) with the constraint equation go(x, y):O can be obtained in
the following way: consider Lagrange’s function

L(x,y,A)=f(X,y)+Ap(X,Y),
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where A is some constant, the necessary conditions for a local condi-
tional extreme of the function L(X, Y, Z.) are fulfilled in the usual form:

%=i+ia—¢:0;
<c’Bx OX OX
%:ﬂ+ﬂa—¢=0.
oy oy oy

To determine the multiplier 4, we add to these conditions the constraint
equation ¢(X,y)=0 thatis 0L/ 041 =0. As a result we have the same

system (1). Solving this system we can find the unknown X, y and A which

plays an auxiliary role and we don’t need it in further investigations.
In the most general case the problem is posed as follows: given the

function U= f(Xl, Xoy X3y e Xn) of n variables, it is required to find its ex-
treme on condition that the variables are subject to m(m<n) subsidiary

conditions:

(@ (X, Xy, Xgyerrenn. X )=0,
<(02(><1,x2,x3, ........ x.)=0,

In this case the auxiliary function of n variables involves additional un-
known parameters (Lagrange’s multipliers)

L(X, X e Xy Ay Ageees A ) = FOXG X e X )+ DA (X0, X e X, ).
i=1

To find the points of the extreme of this function we form a corresponding
system of N+ m equations from which the possible values of the coordinates

X1, Xo, ..., X, Of the points of the conditional extreme are found.

Here we don’t discuss sufficient conditions for the points of the condi-
tional extreme; in a concrete problem the given conditions often make it poss-
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ible to find out whether the point determined from the above equations is an
extreme point without resorting to sufficient conditions.

Note that for the function of two variables, if the found point (XO, yo) is
the critical point, the sufficient condition can be written as

" "
Lyx ny

A = 14 " >
Lix Ly

At that point there is the extreme.

It will be maximum if t;(x <0(|—"yy <0) at that point and minimum,

when L, >0( |_"yy >0) at the indicated point.

If A <O there is no extreme at that point and for A =0 an additional in-
vestigation is required.

And now let us consider some examples.

Example 14. Find an absolute and a conditional extreme of the function

Zz=Xx*+Yy* with the constraint X+Yy—1=0.
Solution.
1) The absolute extreme.

First of all we have to find the critical points of the function under con-
sideration using a necessary condition

?zZX

<a)z( —2x=0,2y=0, i.e. x=0;y=0.
_:2y

Oy

The point (0, 0) is the critical point. Since the function z is the unbounded
function for VX e(—o0;+w), Vye(—ow;+x),then (0,0) is the point of
minimum and Z,i, = z(0; 0)=0.

2) The conditional extreme.

Note that we can seek the points of the conditional extreme for the val-
ues X and Y, satisfying the constraint X+ Yy—1=0. By means of the con-
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straint equation we can write Yy in terms of X, therefore this problem can be

resolved without using Lagrange’s function.
Resolve the constraint with respectto Y, i. e. Y =1—X and substitute it

into the expression for z.

We obtain z = x° +(1— X)2 as a function of one variable x. Research it
for the extreme

dz 1
— =2X+2(1-x)-1)=0 = x=—.
% g+ 21-x)-1) 2
If x=1/2, then y=1-1/2=1/2, i. e. the conditional extreme is attained at
the point P(1/2,1/2).
At that point

z=(12f +(1-y2)* =1/2

and has a conditional extreme, since Z is the unbounded function.
The point M (1/ 2,1/2,1/ 2) is the vertex of the parabola obtained as a

result of intersection of the paraboloid z= X2 + y2 with the plane
X+y-1=0.

In Fig. 6 the point O(O, 0, O) is the point of the absolute extreme for z
and the point M(1/2,1/2,1/2) is the point of the conditional extreme of the
function z with the constraint X+ Yy —-1=0.

Example 15. Find a conditional extreme of the function

Z =C0S° X + c0s” y on the sabsidiary condition Yy — X =

N3a

Solution. We can solve this problem by two methods.
Method 1. Let us construct a Lagrange’s function

L(X,y,A)=c0s*X+cos’y+ A(y—x—n/4)

and write down the system of equations to determine the critical points and
the parameter A
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1/2

0! 1/2

v

Fig. 6. Intersection of the paraboloid with the plane

-

a—Lz—Zcosxsinx—ﬂFO;

OX Sin2X =—4;
<QE=—2aByﬁny+l=O;:<any:A;
% n
- y—X=—.
- x—-==0. g 4
Vs

Since sin 2x+sin 2y = 2sin(x+ y)cos(x—y)=0 (-A+A=0) and
cos(x—y)#0, then sin(x+y)=0, whence Xx+y=7K,keZ.
Consider the following system

y—Xx=mn/4
y + X = 1ik.

Its solution has the form
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Y, :n—k+£, where ke Z.
2 8

10. Applying the Differential to Approximate Calculations

And now we have to find the second derivatives of the function L and
use the sufficient condition of the conditional extreme

2 2
OX ay
2 2
L L
Ly =Ly = oL_oL_ :
OX0y  OYOX
then
Ly, L | |—2cos2x 0
=l . :‘ =4C0S2XC0S2Y .
Lyx I—yy 0 —2C0S2y

At the point (xk, yk) we have
AT KT DK A5 D= e—2-O am
£ == %&wz—ms(fkﬁdzp:
— AT D20
— R IHBY D 2O

It means there is a conditional maximum
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at the points (in, yZn), and there is a conditional minimum

Gl @RAOERER) LA

AJ=aJv= V=
S a5 g =

at the points (x2n+1, y2n+1).
Method 2. Using the constraint equation ¥=>¢+77 4 we can find the
conditional extreme without Lagrange’s function. Substitute y=x+77 4

the equation for z, then T msar——_———— <t

We have the function of one variable X and investigate it for the ex-
treme. The necessary condition is:

but

e———— )——1 are the points of a possible extreme. The

second sufficient condition for the extreme is:
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For k=2n zJ, =—22<0 and at the point (X, Yo,) We have a
conditional maximum  z,, =1+2+/2, for k=2n+1 2}, =24/2>0 and at

the point (x2n+1, y2n+1) there is a conditional minimum Z,i, =1-2J2. We

see that the answers obtained by two methods coincide.

As an application of the theory of conditional extreme the question on
the greatest and the least value of the function of several variables on a
bounded closed set can serve, we have considered how local extremes are
found at the interior points of a set when certain constraints are imposed on a
function f(x).

Let us now show how local extremes are found at boundary points. For
the sake of simplicity, let us confine ourselves to the case of three variables.
Let the surface defined by the equation go(x, Y, z): O be the boundary of the

domain of change of the variables X,y and z in which the function
u=f(x,y, z) is defined and let the functions (X, y, z) and ¢(X, y, z) have
continuous partial derivatives of the second order.

Then we arrive at the following problem: find the points of the maximum
or the minimum of the function U= f(x, Y, z) under the condition that

go(x, Y, Z): 0. This is just a problem of a conditional extreme.

Example 16. The canal section has a form of the isosceles trapezoid of
a given area S. How can we choose its dimensions the washed surface to be
the least?

Solution. Denote as | and a the lateral side and the lesser base of the
trapezoid respectively. Let o be the inclined angle of the lateral side. Then
there are the following relationships between the altitude h and the greater b
base of the trapezoid (Fig. 7).

Here

h=Ising, | =h/sihna, b=a+2lcosc.
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Denote the least washed surface as UuU. It is obvious that
u=2l+a=a+2h/sin a, where u is the function of three variables h, a,
o . Reduce U to the function of two variables. For this purpose express the
known area S intermof h, a and «.

a

Fig. 7. The isosceles trapezoid of the given area S

By this expression we can writt 2FF-F3- Now u can be writ-
ten as a function of two variables h and «, i. e.

= P =

The second equation of this system can be fulfilled when h=0 or
1-2cosa =0. But h =0 since h is the depth of the canal, then cosa =1/2

and a=7/3=60°; sina :\/5/2. By the first equation of the system we
have:
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TT S
It follows that the critical values of @%Baniaz— . Let us define the

I3

values of the second order derivatives for the found quantities of & and h:

2

: : : . : o°u
There is an extreme, in particular a minimum, since A >0 and ? >0.Asa
0
result

u,,—==13

Now consider the same problem by means of Lagrange’s multipliers
method on admitting




For that purpose construct the Lagrange’s function:
@@%%ab@k@e‘%
zaxr
— W
zaxr

and write down a corresponding system for the determination of 4 and the
coordinates of the critical points

. 2

A x>

A RS AT
- —Q)

>r W Ir Wi

GE
— =+-1Q
A

L anagr- SO
B2

By the third equation we obtain A = _E' On substituting its value into

the rest of the equations we have:

_2 2 ouga=0:
SINx
2hcosa h

+ =0;
sinfx Sifa
ah+h’ctgar—S=0.

“

Vs
From the second equation we get 2cosa =1; cosa =1/2; a = 3° 60°.

So the system gains the form:
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”4a2_0_
[ BB

ah+E —S=0.

[ V3

: : a3 : . :
By the first equation h = T Substitute it into the second equation and we

obtain

We receive the dimension coinciding with previous values. As an addi-
tion we have to note what the economic sense of Lagrange’s multipliers is.
The economic sense of Lagrange’s multipliers is the following: the number of
Lagrange’s multipliers has an influence on the supplies of resources of some
production and in the end on the profit. Non-zero multipliers indicate that the
corresponding resources are in short supply and they should be increased.

Zero multiplies say that the corresponding resources are in plenty and
they may be decreased. The reader can know more details about it in the
Course of mathematical programming.

11. Economic interpretation

Marginal products. For a function of one variable y = f(x) the deriva-

tive f’(x) measures (infinitesimally) how a AX-change in X to y:
Ay = f'(X)AX.

The same interpretation applies to functions of several variables. For exam-
ple, let Q = F(K, L) be a production function, which relates the output Q to
amounts of capital input K and labor input L. If the firm is presently using

K™ units of capital and L units of labor to produce Q* = F(K*, L*) units of
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output, then the partial derivative
8_F (K*, |_*)
oK

is the rate at which output changes with respect to capital K, keeping L

fixed at L . If capital increases by AK, then output will increase by

L F

~ (k™) Ak

AQ

F * *
Setting AK =1, we see that 2—K(K , L ) estimates the change in output due
o . . . . OF (,, ~ ).
to a one unit increase in capital (with L fixed). Hence, G_K K ,L )is called

8F * o x
the marginal product of capital or MPK. Similarly, a_L(K L ) is the rate at

which output changes with respect to labor, with capital held fixed at K.
Since it is a good estimate of the change in output for a one unit increase in

OF (,» =
labor input, 8_L(K , L ) is called the marginal product of labor (often abbre-

viated as MPL).
Example 17. Consider the Cobb-Douglas production function

Q= 4K¥*1Y*  when K =10000 and L = 625, output Q is
Q(10000;625) = 4-10000% 4625 * = 4.10% -5 = 20000.

Computing partial derivatives,

R _ g 14 3 —v4 _g Vs V4
oK 4

(remember to treat L as constant) and
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Q _ k¥4 L -3 _ 34 -3
oL 4

(treating K as constant). Furthermore,

xR — 31 V4K V4 —3.625Y4.10000 7Y% =

9K |10000; 625) (10000;625) ?)
3.625Y% 3.5

- = =15
10000 10

Q = KA =10000%4 . 625734 =

L |10000;625) (10000;625) 3)

_10000%* _10° _
2584 5%

If L is held constant and increased by AK, Q will increase by approx-

imately 1.5-AK. For an increase in K of 10 units, use (2) to estimate
Q(10010;625) to be

Q(10010;625) = Q(10000;625)+1.5- AK = 20000 +1.5-10 = 20015.

Similarly, because of (3), a 2-unit decrease in L should induce a
8-AQ=8-2=16-unit decrease in Q. Consequently, we estimate

Q(10000;623) to be
Q(10000;623) = Q(10000;625)+ 8- (— 2) = 20000 —16 = 19984

Elasticity. If Q =Q,(P,,P,,1) represents the demand for good 1 in
0Q

P
change of demand with respect to own price. If the price of good 1 rises by a
small amount AP, the demand for good 1 will change roughly by

terms of the prices of goods 1 and 2 and income, then is the rate of
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o

AQ ~ —=-AP,. (4)
Q o
In general, we would expect 6—Ql to be negative. The quantity Z—% IS
1 1

unsatisfactory as a measure of price sensitivity because it depends too heavi-
ly on the units used. To remove this dependency on units, economists meas-
ure the sensitivity of demand in percentage terms. More precisely, they define
the own price elasticity of demand as

. = changeindemand % _ AQ;/Q, _ P AQ,
' changeinown price% AR /P, Q AR

Since

AQ _ (R +AR)-Q(R) _oQ

~
~

AP, AP, oP,

for small AP, by (4), this elasticity in calculus terms is

=y -‘Z%(Pl*, P,, |*)

QR P 1)

81=

It is usually negative. If it lies between -1 and 0O, good 1 is called inelas-
tic. If this elasticity lies between -« and -1, good 1 is called elastic — a small
percentage change in price results in a large percentage change in quantity
demanded.

To study the sensitivity in demand of one good to price changes in oth-
er goods, economists use the cross price elasticity of demand

. _ change indemand for good1% AQ;/Q; -
Q. P2 change in priceof good 2 % AP, /P,
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Individual tasks

1. Find and plot the domain of the definition of the function.
2. Find partial derivatives of the first and the second orders, check the

"

equality of the mixed partial derivatives Z;y and Zyx s write down a diffe-

rential of the first and the second orders of the function.
3. The function z = f(x, y) and the points M; and M, are given. Find a

derivative of this function at the point My in the direction M;M, and
grad z(M).
4. Find a local extreme of a function.

Variant 1

S 3Xy
2X -5y’

2) z=eY¥+y?
3)  z=x%y+y’x; M,(1,-1); M,(3, 4);

4)  z=xX*+xy+Yy>—6x-9y;

Variant 2
1) z=arcsin(x—y);
2) z=¢"V +2y;
3) z=5xy°; My(2,1); M,(4,-3);

4 z=(x-2) +2y*-10;
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1)

2)

3)

4)

1)

2)

3)

4)

1)

2)
3)

4)

Variant 3

7=Jy2—x2:

z=e9" +2x;
z=In(x%+y?); My(~1,2); M,(0,-2);

z=(x=5) +y®+1;

Variant 4
z=m@—x2—yﬂ;
7=e"Y 4y2.
=", M;(0,0); My(3,—4);

z=x>+y>—3xy:

Variant 5

I=———;
6—x2 — y2

7 =XV 4 %2
z=In(xy+y); My(=2,3); M,(2,2);

z=2xy—2x% —4y?;
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1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 6

z=X*+y?-5;

2,3
z=e""Y +2y;

z =1+ x> +y?; My(1,1); M,(3,2);

Z=X\Jy —X* =y +6X+3;

Variant 7
z = arccos(X + y);
7= 13y2:
z=x°y+x-2; M,(1,1); M,(2,-1);

z=2xy—5x*—3y* +2;

Variant 8

_ 3X+Yy
2—-X+Yy’

z=eY 4 2x;
z=xe’ +ye*; M,(1,0); M,(4,1);

Z=xy—Xx>—y*+9;
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1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 9

z2=19-%x°—y?;
z:eW3+2w
z =3xy? — yx; M;(1,1); M,(3,-1);

z=xy(12-x-y);
Variant 10

L:MQ2+y2—ﬂ;
z=eY +2y;
2 =5x%y — y*x; My(1,1); M,(9, -3);

z=2xy—3x*—2y? +10;

Variant 11

Z=+2%°—y%;
z=¢Y —22.

X
. =

X2 +y2; Ml(l' 2)’ MZ(_B’ 2)’

z=x>+8y° —6xy+1;
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1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 12

S 4xy
Xx—3y+1’

z=eXV" +y?,
z=y*-2xy; M;(3,1); M,(-2,1);

Z=yJX—y?—x+6y;

Variant 13

7=V 4 2y;
z=x*+y?—2xy; M,(1,-1); M,(5,-1);

Z=X>—Xxy+Y>+9x—6Yy+20;

Variant 14

z:ln(yz—xz);
7=V + 2X:
z=In{l+x+y?); My(1,2); M, (3, -5):

z=xy(6-x-y);
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1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 15

Z =arcsin —:

z=x*+2y*—5; My(1,2); M,(-3,-2);

Z=X+y? =Xy +X+V;
Variant 16

x3y

Z= ;
3+X-Yy

7= 4y
2 =In(x%+y3 +1); M,(1,3); M,(~4,1);

Z=X*+Xy+Yy°—2x—y;

Variant 17

Z = arccos(x +2y);
z:eﬁy+2y;
z=x-2y; M,(—4,-5); M,(2,3);

z=(x—1)" +2y?;
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2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 18

z—“BX_Zy-

X2 4yi-4
z:eﬁy—Zy;

7= (x— yz)z; M,(15); M,(3,7);

z=xy—3x*-2y?;

Variant 19

z=m@—x2—yﬂ;
z=eX"Y +x;
z=3x°y; My(-2,-3); M,(5,-2);

z=x>+3(y+2);

Variant 20
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1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 21

z=+3-x*—y?;
z=eX"Y 1+ 2x%;
z=e"; My(=5,0); M,(2, 4);

z=yJ/x—-2y? —x+14y;

Variant 22

Z__4x+y_
2X -5y’

z=e"" +y?
2=(x%+y?): My(L 2); M, (0, -1);

z=x>+8y° —6xy+5;
Variant 23

z =arcsin(2x—y);
z=eW4+2y;
z=xY-3yx; M;(2,2); M,(1,0);

z=1+15x—2x> —xy —2y?;
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1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 24

I=——7—>,
4—x%_y?

z=e¥" 4x%
z=x°y+y% M0, -2); M,(12, -5);

z=1+6x—Xx>—xy—y?:

Variant 25
z=In(2x-y);
7=¢¥' _2y?.
z =ﬁgz+1: M, (-1, 2); M,(2,0);

Z=x>+y? —6xy—39x+18y +20:

Variant 26

z=In{l+x2 - y?) My(L,1); M, (5, —4);

z=2x+2y® —6xy +5;

o4



1)

2)

3)

4)

1)

2)

3)

4)

1)

2)

3)

4)

Variant 27

Xy .
=—+=: M,(-11); M,(2, 3);
z y+x 1( ) 2( )

z=3x° —3y3 —9xy +10;

Variant 28
7=V 1 y2.
z=x>+y’x—-6xy; M,(13); M,(4,2);

Z=X°+Xy+ Yy’ +X—y+1;

Variant 29
Z= L ;
X2 +y>—6
x3y .
z=e""7 +3y;

1= Mi(2.2):My(-3.4)

z2=4(x-y)-x"-y?;
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1)

2)

3)

4)

Variant 30

z = arccos(x — y);
7=V 12y,
z=e""; M;(1,0); M,(2,-4);

z=6(x—y)—3x* —3y?;
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Theoretical questions

1. A set of points.
2. A range of a function.
3. The domain of the definition of the function.
4. The function of two variables.
5. A geometrical interpretation of the function of two variables.
6. The surface and the plane.
7. A tangent line to a section of a surface.
8. An implicit function.
9. An explicit function.
10.The XOy-plane.

11. A limit of a function.
12.The ¢ -neighbourhood of a point.
13. A continuous function.

14. A continuity at a point (XO, yo).

15. A total increment of the function of two variables.
16. A linear function of the increment.

17.The principal part of the total increment.

18. A partial increment of the function of two variables.
19. A partial derivative of the function of two variables.
20. A sufficient condition for differentiability.

21. An independent variable and a dependent variable.
22. An argument of a function.

23. An original generalization of the partial derivatives.
24. The function of three variables.

25. A geometrical meaning of partial derivatives.

26. A function differentiable at a point.

27. A total differential of a function.

28. A partial differential of a function.

29. An approximate calculations of a function.

30. Applying the total differential to approximate calculation.
31. The differentiation of the function of two variables.
32. An infinitesimal value.

33. A composite function of two independent variables.
34. An intermediate argument.
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35. A definiteness.

36. A composite function.

37. A directional derivative.

38. The unit vector.

39. Direction cosines.

40. A gradient of a function.

41.Projections of a vector.

42.Projections of a gradient.

43. A scalar product of vectors.

44.The point of extreme of the function of two variables.
45. The point of maximum or the point of minimum.
46. A necessary condition for the extremum.

47. A cuspidal point of a surface.

48. A stationary or critical point of a function.

49. A sufficient condition for the extremum.

50. A second derivative of a function.

51. The greatest and the least values of a function.

52. A closed domain.

53. A boundary of a domain.

54. An interior point of a domain.

55. A boundary point.

56. A magnitude.

57. A coupling or a subsidiary condition.

58. An unconditional extreme.

59. A point of a conditional extreme.

60. The necessary conditions for a conditional extreme.
61.Lagrange’s method of multipliers.

62. Necessary conditions for a local conditional extreme of a function.
63. A Lagrange’s function.

64.Lagrange’s multipliers.

65. Sufficient conditions for the points of a conditional extreme.
66. An absolute and a conditional extreme of the function.
67. A constraint equation or a constraint.

68. A canal section, an isosceles trapezoid.
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