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Introduction

Differential calculus plays a very important rule in economics in particu-
lar in problems concerning the optimum, management and plans. Therefore
the deep knowledge in this division in higher and applied mathematics is nec-
essary for modern economists.

In guidelines in brief form only the most principal topics of differential
calculus are stated.

The present guidelines are the continuation of the one part where no-
tions of limits and continuity of functions had been regarded. By means of
these notions we can introduce the notions of derivative and differential of a
function which are one of the most fundamental in mathematics.

Guidelines for Differential Calculus of
a Function of One Variable

1. Derivative and Differential

Let’'s begin with considering one of the problems using the notion of
the derivative.

Velocity of rectilinear motion. Let a point move in a straight line which is
taken as a number scale and let the law of variation of the coordinate S of

the moving point as function of time to be known s = F(t).

During time interval At from time moment t to t + At the coordinate of
the point gains the increment

As =F(t+At)-F(t).

If the motion is uniform, that is S is a linear function of t of the form

As : :
S=5p +Vpt we have As=VyAt and — =V, is a constant velocity of the
At

- : : : o : . AS
rectilinear motion of the point. But if the motion is nonuniform the ratio E

depends on both t and At. It is then called the average (mean) velocity cor-
responding to time interval from t to t+ At. Denoting is v,, we can write



AS
Vay :E. Passing to the limit as At -0 we come to the definition of

the velocity of rectilinear motion at the given moment that is

. . As . F(t+At)-F(t)
v=lim v, = IIm — = Im :
At—0 At—>0 At At—0 At

Now we may give a definition of the derivative of a function.
Definition 1. The limit of the ratio of the increment of a given function

y= f(x) to the increment of the independent variable as the latter tends to
zero is called the derivative of that function (provided that this limit exists):

f(x+Ax)— f(x)

f'(x)=lim .
AX—0 AX
Leibnit’z notation of the derivative is M or d_y
dx dx

The particular value of the derivative f’(x) at a given point x is usual-

ly denoted by f'(Xy) or Y/

X=Xg

Now we can see the connection between the derivative of the function
and the velocity of rectilinear motion at the given moment t.

In general case the derivative of a function can be interpreted as

the rate of change of a function f(x) at a given point x that is the limit of
the average rate of change of that function in the interval [x, x+Ax] as x

tends to zero ( on condition that this limit exists).
Now let’s introduce the notion of left and right-hand derivatives at

the point x;:
f/(x)=lim flx+ Ax)- f(x) is the right-hand derivative;
AX—0+0 AX
f'(x)=lim flxcr Ax)- f(x) is the left-hand derivative.
Ax—0-0 AX

There is such a statement. The function f(x) has the derivative at the

point x; if its left- and right-hand derivatives coincide.



The notion of differential is closely related to the notion of derivative.

. Af(X
Let's consider the notion of differential. Since lim LO) = f'(xp), this im-
Ax—0  AX

plies %XO) = f'(xp)+ ¢, where ¢ is an infinitesimal as Ax — 0. It follows
X

that Af (Xp)= f'(xxg)JAX + £AX, i. e. Af(Xy)= f'(xg)AX+0(AX), where o(Ax)

is an infinitesimal of higher order than Ax as Ax —0 and f'(xo) is a con-

stant. Then the quantity f’(xo )Ax is the linear part of the increment of the
function. And now we can present a definition of the differential.

Definition 2. The principal linear part f’(XO )Ax of the increment Af (X)
of the function which is proportional Ax is called the differential of
the function. The differential of the function is denoted as df (x) or dy if
y = f(x).

Thus, the differential and the derivative are connected by
the relationship dy = f’(x)AX. The increment Ax of the independent variable
is called its differential and denoted by dx, where dx = AX.

This is coherent with the general definition of the differential since for
the function y =X we have

dy = dx = X’AX = AX that is dx = AX.

Thus, the differential of the function is equal to its derivative multiplied
by the differential of the independent variable:

dy = f'(x)dx.
2. Economic Significance of the Derivative

In practice of economic investigations the so-called production functions
are widely used for revealing of relationships between the output of produce
and resources input, for prognostication of the development growth of indus-
try, for solution of optimum problems and others.

In supposing of differentiability of production function the differential
characteristics, connected with the notion of the derivative, gain an important
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meaning. For instance, if the production function Y= f(x) establishes
the relation of the output of produce Yy on resources input X, then f'(x) IS
called the marginal product, if y= f(x) asserts the relation of the cost of

production y on the output of produce X, then f’(x) is called marginal cost.

The characteristic of the relative change of the function increase
y= f(x) to be relative small increase of the argument X is called the coeffi-
cient of elasticity. The coefficient of elasticity is defined by the formula

E=—:— or E:y’i.
X y

This coefficient is widely used in investigations of consumers commodi-
ty demand in the dependence on prices of the commodities and incomes of
population.

The high coefficient of elasticity means the weak power of the consum-
er’'s saturation and the low coefficient indicates to the large insistency of this
saturation.

Now we proceed to the geometrical meaning of the derivative and the
differential.

3. The Geometrical Meaning of the Derivative. The Tangent and
the Normal to a Line. The Geometrical Significance of
the Differential

Let’'s consider the graph of the function f(x) and draw a straight line
passing though points M(Xg, Yo ) and My (X, y;). It will be called the se-

cant passing through these points (Fig. 1). The points of the secant with co-
ordinates (x, y) satisfy the equality

Y=Yo _%1=Yo _ o,
X—Xg X —Xg >

where « is the angle between the secant and the x-axis. Let us rewrite
this equality as follows:



Y1—Yo
=Vn + X — X
Y="Yo Xl_XO( 0)
YA
T
Yi 1 M,
Vo | M, 104
| -
0 xO xl X

Fig. 1. The graph of f(x) and the secant passing through My and My

Now we give the following definition.
Definition 3. The straight line which is approached in the limit by

the secant as X; — Xy will be called a tangent to the curve Yy = f(x) at
the point (in Fig. 1 that is denoted as My).

We can show that for the function f(x) having the derivative at the
point Xo the tangent exists. Indeed, in this case Ay=Yy;—-Yy, and
AX = X1 — Xg

im Y = fim 1Yo _

AX—0 AX X1 —>Xp Xl — XO X1 —>Xp Xl — XO

So the equation of the tangent to the graph of the function y = f(x) at
the point X, has the form:

y = f(x0)+ f'(X XX =)
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Here

tna= lim tana, = lim 270 = £1(x,),
X1 —>Xp X1 —>Xp Xl - XO

where « is the angle between the tangent and x -axis.
Thus we can give the following definition.

Definition 4. The value of the derivative f'(xo) is equal to the slope of
the tangent line to the graph of the function y = f(x) at the point with abscis-
sa Xg.

Here it is convenient to present the definition of the normal to a curve.

Definition 5. The straight line passing through the point I\/IO(XO, yo)

perpendicularly to the tangent line at that point is called the normal to
the curve at its point My(Xg, Yo ) (Fig. 2).

Y A

Vo 4

Fig. 2. The normal MyN to the curve of f(x) and the tangent MT

By the definition it follows that the slope of the normal to the curve at

1
f'(xo)

the point MO(XO, yo) being equal to — , the equation of the normal

can be written in the form:
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y—fx)=-

(In Fig. 2 the normal is denoted by MyN ).

The notion of the differential of a function was explained above now
let’s introduce its geometrical interpretation (Fig. 3).

YA

Fig. 3. The geometrical interpretation of the differential of f(x)

Since f’(x):tana (a is the angle between the tangent MT and
X -axis) the differential dy = f '(x)dx is equal to the length of the line segment

RT that is the differential dy of a function y = f(x) at a point X is equal to

the increment of the ordinate of the tangent line drawn to the graph of
the function at its corresponding point.
The increment of the function Af (X) is equal to the increment of the of

the ordinate of the graph of the function (i.e. to the line segment RM' in
Fig. 3) and therefore the difference between the increment of the function and
its differential is equal to the length of the line segment M T lying between
the tangent and the graph. This line segment is an infinitesimal of higher or-
der than the segment MR as AX— 0. For a concrete finite value of the in-
crement AX of the differential of a function may be greater or less than its in-
crement.
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4. Condition for Differentiability of a Function. Relation
between the Notion of Differentiability of a Function
and its Continuity

Definition 6. The function is called a differentiable function at the point
Xo If the derivative or the differential of the function exists at this point.

The process of finding the derivative or the differential of a function is
referred to as the differentiation of the function.

Let’'s show the relation between the notion of differentiability of a func-
tion and its continuity, which is connected in the following theorem.

Theorem. A function f(x) differentiable at a point X is continuous at
this point.
Let Af(X)= f'(xg)AX+0(AX). Then

lim f(x)=f(xp)+ Im Af(xq)=

X—Xg AX—0

= f(xg)+ f (xO)AI)l(rEOAx+AI)|(rEOO(Ax)_ f(xg)-

Since, lim f(x)= f(xy) hence this differentiable function is continu-
X—>Xp

ous at the point.

The converse statement is not true. The continuity of the function does
not involve the differentiability of a function.

For instance, the function y :\x\ is continuous throughout Ox but has
no derivate at the point X=0.
Indeed, we have Ay =|x+AX/—|X and the substitution of x=0 yields

y _ A
Ay =|AX| whence 2Y
Ax AX
Ay  AX A AX
We see that —y:——l for Ax>0 and 2y =——=-1 for Ax<O.
AX  AX AX AX
A
Therefore, the ratio A_y has no limit as Ax tends to zero arbitrarily, which is
X
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equivalent to the nonexistence of the derivative at the point X =0. This fact is
also clear from the geometrical point of view: the graph of the function y = ‘X‘

is a broken line (Fig. 4) with a corner point at the origin (0; O) and there is of
course no tangent line to the graph of that point.

/A

>
X

Fig. 4. The graph of the function y = x|

A more general case of a corner point is presented in Fig. 5, where
the curve has no single derivative but has two different derivatives at the point
A — a left- and right-hand derivative

im &Yk, im Y,
Ax—0-0 AX Ax—0+0 AX

The tangent rays emanate from this corner point with slope k; and K, .

It can also happen that the graph of a continuous function has a tangent
at a given point but the derivative of the function does not exist at that point.

This is the case when the tangent is perpendicular to the axis of abscis-
sas.

In this case the function f(x) is said to have at a given point Xy an in-
finite derivative equal to + oo or —oo if
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Ay Ay

Im —< =400 or im — =—w.

Ax—0 AX Ax—0 AX

Examples of such points are shown in Fig. 6.

z

>
X

Fig. 5. More general case of a corner point

>
X

Fig. 6. The function f(X) with infinite derivatives

The point B is called a cuspidal point or cusp. The cusp is a particular
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case of a corner point. And C is called a point of inflection. Both these points
have vertical tangent lines.

At last it should be remarked that the function is termed a differentiable
on an interval if it is differentiable at every point of this interval.

5. Properties of Derivatives and Differentials
of Functions of One Variable

1. If the function f(X) is equal to a constant then its derivative is equal
to zero, that is f(x)=C=const, f'(x)=C’"=0. It follows from the fact that

function f(x): C has no increment for all variations of X,
Af(x)=AC =0.

The rest properties are included in the following theorems.
Theorem 1. Let functions u(x) and V(X) have derivatives at a point X

then at this point also exist the derivatives of function Clu(x)+ CZV(X) (G

and C, constants), u(x)-v(x), M (for v(x) = 0).

v(x)

Theorem 2. [Cuu(x)+ Cov(x)] = CuU'(x)+ Cov'(x).

The derivative of a sum of two or a finite number of functions is equal to
the sum of the derivatives of the summands.

Theorem 3. [u(x)-v(x)] =u'(x)-v(x)+u(x)-v/(x).

The derivative of the product of two functions is equal to the sum of the
product of the derivative of the first function by the second function and the
product of the derivative of the second function by the first function.

u(x u'(x)-v(x)—u(x)-v'(x
Theorem 4[ ( )} = ( ) ( ) 2( ) ( ) (V(X);tO).
v(x) (v(x))

The derivative of the quotient of two functions is equal to the function
whose
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denominator is equal to the square of the divisor and the numerator is equal
to the difference between the product of the derivative of the dividend by the
divisor and the product of the dividend by the derivative of the divisor.

This theorem is given without proof but it should be noted this proof is
based on the definition of the derivative. There are corresponding formulas
for differentials.

Since (u +V) =u’+V’, then multiplying both sides of the relation by dx
we obtain
1. d(u+v)=du+adv.

Since (u -V) =u’'-v+u-V', then multiplying of both sides by dx leads
to
2. d(u-v)=vdu+udv and in particular d(Cu)=Cdu, dC =0.

aking the formula M l:u’(x)-v(x)—u(x)-v'(x)
Taking the formul hx)} o

and multiplying its both

‘dx-v—u-v'dx vdu-—udv
members by dx we receive d 4o dx=Ud u-vid = du—ud :
v v V2 V2

All these properties for derivatives and differentials are recommended
for remembering.

6. Differentiating Composite Functions.
Invariance of the form of the Differential

The notion of a composite function was given in the guidelines "Intro-
duction to Analysis". There is the following theorem for differentiation of such
a function.

Theorem. The derivative of a function is equal to the product of the de-
rivative of the given function with respect to the intermediate argument by the
derivative of this argument with respect to the independent variable.

Let y= f(u) and U=¢(x). It is required to prove that
y'=1f'u)-u'=f'(u) ¢(x).

Let X receive an increment AX. This results in an increment Au of the
intermediate argument U = (p(x) which in its turn, generates an increment Ay

17



Ay

of the magnitude y. To find y' we must compute lim — as AXx—0. Let
Ax—0 AX
. Ay . Ay Ay Au :
us represent the ratio 2y in the form y_4oy. . According to the rules

AX AX AU AX
for passing to the limit in a product we can write

im Y —gim (Y AU i A i A
AXx—0 AX Ax—O0\ AU AX Au—0 AU Ax—0 AX

where Au —0, as Ax — 0, since U=¢(X) is a continuous function.
Since

we arrive at the desired formula.
Applying this theorem for the differential of a composite function, we
have

where U :q)(x). The obtained relationship shows that the differential
and the derivative of the composite function y = f(go(x)) are related to the

differential of the dependent variable U = go(x) in the same way as is the case

when U is an independent variable. This property is known as invariance of
the form of the notation of a differential.

7. Differentiating Inverse Function and
Functions Represented Parametrically

Let y= f(x) and x = go(y) be a pair of mutually inverse functions. The
function x:go(y) can be obtained by resolving the equation y = f(x) with

respect to x. For definiteness let the derivative f’(x) be known and it does

18



not turn into zero. In this case the function x = (o(y) is also the continuous
function.
In order to find the derivative x’y = go’(y) we use the representation of

the derivatives in term of differentials. Then we obtain

!

x_dx_ 1 1
Yody oy, f(x)
y & )

Similarly, if ¢'(y)#0 then f’(x):%). Briefly, the derivatives of two in-
oy

verse function are the reciprocates of each other that is

Now let us consider parametric representation of functions. Let function

x=g(t) .
{V=WGY ©

be functions of one and the same variable t.Such representation is called
parametric representation of functions. The specification of these functions
yields a functional relationship between the variables x and Y. For with each

value of t (belonging to the given domain) this system (*) associates same
value of x and y and thus generates a correspondence between x and Y, t

is called a parameter.

Let functions ¢(t) and w(t) be differentiable on an interval [t;, t,] and
gp'(t);t 0. Then the property for the differential of a composite function, which
had been regarded above, may be conveniently used for computing the de-

L : : _ , d
rivative of a function represented parametrically. Since Y, =d_y for x:go(t)
X

and y =y(t) we have dx =¢'(t) and dy ='(t) then
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2R,

8. Derivatives of Elementary Functions

We have considered some rules for computing derivatives of functions
of one variable. These rules enable us to compute derivatives of any elemen-
tary functions from a knowledge of derivatives of simple elementary functions.
Let us prove that for a derivative of simple elementary functions the following
formulas are valid.

The derivatives of the power function and basic trigopnometric functions:

!/
1. (xn) :an_l,
' n n n-1
. X+ AX) —X ) nx + 0(AX _
(x”) = lim ( ) = lim ( )=nx” L
AX—0 AX AXx—0 AX

4

2. (sin x) =cosx,

' sin (X + Ax) —sin x

(sin x) = lim = lim 2sin (A%)COS(X+A%)

AX—0 AX Ax—0 AX

=COS X,

in (AX
SINn
as lim COS(X“LA%): cosx, lim (—A)zl (the first remarkable limit).
AX—0 AX—50 A%

!

3. (cosx) =—sin x,

(cosx) = (sin (% = x)), = —cos(% = x): —sin X.

4. (tan x) = |
(anx) %oszx
' sin , sin 'cosx—sinxcos ’
(tan x) =( x) _ (sin x) (cosx) =y , .
COS“ X

COS X COS X
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5. (cotx) :_%sinzx'

This derivative is obtained similarly as the derivative of tan X.

The derivatives of inverse trigonometric functions can be found by
means of the expressions for the derivatives of trigonometric functions, using
the rule for differentiating inverse functions.

’

6. (arcsin x) =

1
V1-x?
If y =arcsin X then x=sin y and Xy =cosy, therefore

, v 1 1 1 1
y, = (arcsin x) == = =

Xy €osy 1_sin2y ~1-x2

7. (arccosx) =— !
1-x?
8. (arctan x) = .
( ) 1+ x?
9. (arccotanx) =—
( ) 1+ x?

Now let us consider the derivatives of logarithmic and exponential func-
tions.

10. (I x) = %
(nx) = im M (X+Ax)_'” X_ lim b )
AX—0 AX—0 AX
In {1+ AX
R TT
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According to the property that symbols of the logarithm and the limit can
be interchanged if the expression under the sign of logarithm possesses a
limit as Ax — 0 and recalled that

im (In(L+ a(x)) (0 =

a(x)—>0
we obtain

1 i
=—In Im |1+— ="lIhe==.
X Ax—0 X X X

( ij/Ax 1

!

' 1 In x r (Inx 1
11. (log,x) =——, log, x=—,then (log, x) =| — | =——.
(log, x) xha' 22T |na (log., x) (Inaj xIn a

’ In
12. (ax) =a*lna, y=a”, then In y =xIna whence x=2Y and

Ina

If a=1 then (ex) =X,

The underlined formulas for derivatives of the simple elementary func-
tions are insistently recommended for remembering

Now let us consider several examples for computing derivatives using
the properties of the derivatives, known rules for differentiating and the formu-
las for differentiating of simple elementary functions.

: o sin X
Example 1. Find the derivative: y = JxIn Xt+— .
€

Solution. Applying the properties of derivatives, in particular theorem of
Sec. 5, items 2,3 and 4 and derivatives of simple elementary function, we get
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y'= (& In x), +(¥j (\&)’ In x +/x(In x)' + (sin x) €” —(ex)(sin x) =

S

1 1 cosxe*—e*sinx Inx 1 cosx—sin X

= In x+/x =+ = +——+
2/x X g2 24/ x e

Finally
y'=0,5x%(In x+2)+ e *(cos x—sin x).

Example 2. Find the derivative: y =In tan x.

Solution. It is a composite function. Therefore using the rule of differen-
tiating of the composite function which was given in Sec. 6 we consider tan X
as the argument of the logarithmic function. Then we find the derivative of
logarithmic and multiply it by the derivative of the argument, that is

' = (In tan x) = (tan x) 1 1 2

tan X  tan xcos? x  Sin XcosXx  sin 2x

Example 3. Find the derivative: y = Insin (x2 +1).
Solution. Acting analogously to example 2 we have

y' = (In sin (x2 +1))' = (ZI;(C; 111); = ZZiE()(i(ZXiI)l): 2X cot(x2 +1).

Example 4. Find the derivative: y = arctan Jx.
Solution. Let us find this derivative using the rule for differentiating of

the inverse function (sec. 7) . Then X= tan? y and
v 2tany

X, =(tan®y) = 2tan y(tan y) = ,
, =(tan?y) yany) =y

23



Whence

, 1 cos’y

yX:x_’y_Ztany'

L = ! , then finally we

Since /x =tan y and cos’y = =
1+tan®y 1+(\/;)2 1+x

_1
24/x(1+x)

have Y, =
X = acost
y=Dbsint

Solution. It is parametric representation of the ellipse because

Example 5. Find the derivative: { (0<t<2nr).

y
b

2
> —cos’t+sint=1.

X2
_2_|_
a

Using formula (**) of Sec. 7 for the function represented parametrically, we
obtain

v, N/ (bsin t) _ bcost =—Ecotant.

X (acost) —asint a

9. Derivatives of Implicit Functions

Suppose that Y is an implicit function of X which means that it is speci-
fied by an equation connecting the independent variable X and the func-
tion Y, the equation can not be solved with respect to Y, i.e. F(x,y)=0.

Then the derivative of this function (provided it exists) can usually be
found by differentiating (with respect to X) both sides of the equation. In this
differentiation it is necessary to take into account that Yy is a function of X

that is y = y(x) (specified by this equation). We will illustrate by examples
the practical significance of this rule.
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Example 1. Let us determine the derivative of the function y specified

by the equation y2 —25x =0 (this is the equation of the parabola).
Solution. Differentiating with respect to X and taking into account that

y is a function of X we receive 2yy'—25=0, whence y' = oy
y

In this example it is not difficult to find the explicit expression for Yy,
namely Yy =5+vx or y=-5+/x.

5 5
The differentiation of these functions yields y'=——= and y'=———
RPN R AN

that is coincided with the result just obtained.
Consider another example.

Example 2. Find the derivative: ye?Y +In (x—y)=0.
Solution. Differentiating with respect to X we get

ye? +ye?Vay + 1Y _0 o y’(e2y +2ye?Y —LJ =——,
X y

r_ | o2V 2y 1 _ 1
=le”r +2ye” —— |=— :
! ( g X—YJ (ezy(x—y)(1+2y)—1)

Thus, the derivative of any implicit function specified by an equation in-
volving elementary functions can be determined according to the known dif-
ferentiation rules irrespective of whether it is possible to respect the function
explicitly. In the general case the derivative of such a function is expressed in
terms of the independent variable and the function itself.

10. Logarithmic Differentiation

When computing the derivative of a function which can be represented
in the form
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where the base and the exponent are both functions of the independent
variable X is referred to as a composite exponential (or power exponential)
function, it is convenient to use the so-called logarithmic derivative, that is the
derivative of the natural logarithm. Indeed, for

ny=h f(x)=e(x)’® = y(x)n o(x)

as a result of this operation, is

() = 1) ==Y 0 gl )2

then

"=y '(x)In o(x)+ XM: x)” 9 ()i o(x)+ xw
v = (o) w2 = 0 o)+ 002 |

Logarithmic differentiation is not only applicable to finding the derivative
of a composite exponential function but also to some other problems, for in-
stance, to computing derivatives of a product of powers of some elementary
functions, a quotient of algebraic and transcendental functions and others.

COS X

Example 1. Find the derivative: y =sin X (0<x<7x).

Solution. First we find a logarithm of this function and then we use

COS X

the logarithmic derivative In y =Insin X =C0sX-Insin x and

' 2

' : ’ Y : : COS“ X
(Iny) :(In sin xcosx) = (cosx-Insin x) or 2~ =—sin x-Insin x+
y sin X
cos® x
whence Y’ =sin x*®**| === —sin x-Insin x |.
sin X
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11. Applying Differential to Approximate Calculations

The application of the differential to approximate calculations is based
on the replacement of the increment Ay = f(xo +Ax)— f(Xy) of a given

function f(x), which may depend on AX =dx in a complicate manner, by
the simpler expression f '(XO )dX (the differential) found by differentiation.

Thus for small values of dx we write
Ay = f (g +Ax)— f(xg)=dy +0(Ax) = f'(Xg )dx +0(Ax),
with a small relative error we can put: Ay ~ dy, then
f(xg +Ax)— f(xg)= f'(Xo)dx.
This approximate equality can be immediately used to solving the fol-

lowing value f (X +Ax). So f(Xy+Ax)~ f(Xy)+ f'(Xo)dx, (Ax = dx).

Example 1. Compute 3/0.988 .

Solution. For approximate calculation of this expression we consider the

function y = f(x)=%/x and suppose that f(x, +Ax)=3/0.988.

The initial point x =1 and f(xg)= f(1)=1, then dx =-0.012.
2
The differential of this function dy = (X )dx =%x03dx. Substituting
xp =1 we obtain dy= % -1-(~0.012). Considering that Ay ~dy we get
f(xo +Ax)= f(xq)+ f'(Xg)dx, whence

3/0.988 ~ 31 —% .0.012 =1-0.004 = 0.996.

Example 2. Compute In1.1.
Solution. In this case we suppose f(x)=Inx and f(x,+Ax)=In1.1.
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1
Considering that xo =1 and dx=0.1, then f'(x)== and f'(xy)=1. Since
X

f(xg+Ax)= f(xg)+ f'(Xy)dx, we obtain
N1.1=In1+1-0.1=0+0.1=0.1.

12. Derivatives and Differentials of Higher Orders
of Functions of One Variable

The derivative of a function of one variable y = f(x) is some function of

the variable x. Therefore, we can try to find its derivative. The obtained func-
tion if it exists is called the second derivative, or the derivative of the second

order of the function f(x). Analogously, by induction, we can introduce the
derivatives of higher orders.
Since y' = f'(x) is the derivative of the first order, then

d*f(x)
dx?>

V' =(y) = F(x)=

In a similar way we obtain the derivative of the n-th order:

Physical Interpretation of the Second Derivative. Let S = F(t) de-
note the part covered by a material point during time t. Then it had been said

above (Sec. 1), then lim F(t+At)-F(t)
At—0 At

locity of the point at time instant t. In the same way, we can make sure that

!/ ! 2
iim © (t+at)-F(t) _ F'(t)= d°F () is the instantaneous

At—0 At dt?
acceleration of the point at time instant t.

= F'(t) is the instantaneous ve-

the derivative
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Let us now introduce the notion of differentials of higher orders. With dx
fixed, the differential dy =df (x)= f'(x)dx is a function of the variable X.

The differential of this function is called the differential of the second order
and is denoted as follows:

d?y=d?f(x).
If y = f(x), then

dy = f'(x)dx, d?y =d(dy)=d(f'(x)dx)=d(f'(x))dx = f"(x)dx.

Analogously, using the principle of induction, we can also define differ-
ential of higher orders:

d"y =d(d™y)= £ M (x)dx"

n

d’y

dx"
Differentials of higher orders do not possess the invariance of the form

of the notation which is possessed by the differential of the first order. For in-

stance, d*f (p(x)) = f"(p(x))d %p(x).

Let us consider examples on finding derivatives and differentials of
higher orders.

Example 1. Let us derive general formulas for derivatives of order n for
some elementary functions.

We find by induction:

Therefore, instead of f(n)(x) we may use the notation

(Xa )(n) =a(a-1)a-2)a-3)...(a—n +1)X(“_n),
(ax)<”) _ aX(In a)n’ (ex)(”) _ ex’
(sin x)(”) = sin (x + ?) (cos x)(”) = cos(x + ?j ,
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y=Ih@+x), y =T Y A
() _ (In(14 x m _ (1) (n-1)
Y0 =) -

Example 2. Find the differential of the second order for the function
1 1

X X

Solution. Using the general formula d2y=y”dx2 we find

14 1 3

dzy:(—%Jrngxz _2 X e,
X

3 3
X X

13. Local Extremum. Mean-Value Theorems

We begin with the following definition.
Definition 1. We will say that the function y = f(x) reaches a local

maximum (minimum) at the point x = x; if there is a neighborhood of this

point U, = (xg — &; xo + &) where the inequality is fulfilled.

f(xo)z f(x), VerxO (for all x belonging to Uxo) (respectively
f(xg)< f(x), vx ceU,).

A local extremum is a general term for a local maximum or a local min-
imum.

And now we introduce mean-value theorems, namely Fermat's, Rolle's,
Cauchy's and Lagrange's theorems.

Fermat’s theorem. If a function f(x) reaches a local extremum at
a point xy and the derivative f’(xo) of the function f(x) at the point x ex-

ists then it is necessarily equal to zero: f'(xg)=0.
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Proof. For definiteness we suppose that f(x) has at the point x; a lo-

cal maximum. By the definition of the derivative we have
. flxg+Ax)—f

fr(xo): lim (XO ) (XO)_
Ax—0 Ax

Since f(xp)> f(x), VxeU, , then for sufficiently small Ax>0
f (2 +Ax)— f (xp)

<0, whence passing to the limit as Ax — 0, we receive

Ax
that
(g +Ax)— f(xp)
f'(xq)= | 0 0/<0. 1
(%)= im Ax @)
If Ax <O then f(xo +ixx)_ f(XO) >0, therefore the limit of this in-equality
as Ax — 0 equals to
f'(xp)= lim fao +Av)=flx) o 2)

Ax—0 Ax

From the relationship (1) and (2) it follows that f’(xo): 0.
This theorem is illustrated in Fig 7.

M T

 y=f(x)

| >
0 Xq X

Fig. 7. The illustration for Fermat’s theorem
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Here MT is the tangent at the point M with abscissa x;. The slope of

this tangent is equal to zero, thatis f'(xy)=0.

We give the rest theorem without proof but we introduce the geomet-
rical interpretation of Rolle’s and Lagrange’s theorem.

Rolle’s theorem. If the function y = f(x) is continuous on a closed in-
terval [a;b], differentiable at all the interior points of an open interval (a;b)
and assumes equal values at the end points of this interval f(a): f(b), then

there is at least one point C inside the interval (&;b) at which f'(c)=0.
This theorem has a simple geometrical significance. If the conditions of
this theorem are fulfilled, then on the graph of the function y = f(x) there is

the point (C; f(C)) at which the tangent line is parallel to X -axis (Fig. 8).

-
0 a c ) c, bX

Fig. 8. The function y = f(x) and the tangent line is parallel to X-axis

Cauchy’s theorem. Let functions f(x) and g(x) be continuous on a
closed interval [a; b] and haves derivatives not vanishing simultaneously on
an open interval (a;b) and f(a)= f(b).

Then on the interval (a;b) there is a point C for which the following
equality holds:
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(A
ob)-g@ go) <P

The corollary of this theorem if g(x): X is Lagrange’s theorem for finite
increments.
Lagrange’s theorem. Let the function f(x) be continuous on a closed

interval [a;b] and have the derivative on an open interval (a;b). Then on

the interval (a; b) there is a point C for which the following equality holds:
f(b)-f(a)=f'(cb—a) (a<c<bh).

This theorem has the following geometrical interpretation, if we rewrite it in
the form

f(bb):;(a)= f'(c) (a<c<bh).

The left-hand side of this equality is the slope to X-axis of the chord MN
joining the points M(a; f(a)) and N(b; f (b)) of the graph of the function
y= f(x). The right-hand side of the equality is the slope of the tangent to

the graph at a some interior point with the abscissa Ce(a; b). By the La-

grange’s theorem it follows that there is the point C on the curve that the tan-
gent line to the graph of the function at this point is parallel to the chord
MN (fig. 9).

14. Evaluation of Indeterminate Forms. L'Hospital’s Rule *

f(x)

. . . . 0
We will say that the ratio ﬂ presents the indeterminate form 0 as
g\X

x—a if im f(x)=lim g(x)=0. To evaluate this indeterminate form it
X—a X—a

f(x)

means to find lim ——< if it exists.

X—a g(x)
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| i é»
0 a c b x

Fig. 9. The graph of the function at the point is parallel to the chord MN

There is the so-called L'Hospital’s rule for evaluating these indetermi-
nate forms which is concluded in the following theorem.

Theorem. Let functions f(x) and g(x) be continuous and have first
derivatives in the neighborhood of a point a except possibly the point a itself.
If the functions g(x) and g'(x) are not equal to zero in the indicated neigh-

borhood, lim f(x)=lim g(x)=0 and the limit lim f'(x)
X—a X—a X—a g’(x)

f(x)

equal limit lim —— also exists.

X—a g(x)

exists, then an

0.0)
For indeterminate forms of the type {—} there is the second L'Hos-
o0

pital's rule which states that if lim f(x)=Ilim g(x)=oo, then

X—>a X—a
. f(x . fl(x .
lim L) = lim —() when the latter exists.

x—>a g(x) x—>ag'(x)
We have presented this theorem without proof but we note that they
can be proved with the aid of the mean-value theorem.

f'(x)
g'(x)

Remark 1. If the expression is the indeterminate form of the type

34



0 00 . . .
—+ or «+—+ and functions f(x) and g(x) satisfy to the conditions of

0 00
the L’'Hospital’s rules, then

lim (g (X) = lim f”(x)

x—a g( x—a Q (X) x—a g"(x)

It should be stressed that if the third limit exists, then the second and the first
limits also exist.

Remark 2. The indeterminate forms {0- oo}, {0 —oo}, {100} and {OO} are

reduced to the indeterminate forms {%} and {f

} by means of algebraic
o0

transformations.
Let us consider examples.

sin 3x
Example 1. Evaluate lim
x—0in 4X

. : : 0 . .
Solution. Here we have the indeterminate form {6} Using L'Hospital’s

rule we obtain

sin3x (0] . (sin3x) . 3cos3x 3
lim — =q—¢=IMm - —=Im ——=—.
x—>0SIn 4x (0) x-0 (sin 4x) x>0 4cos4x 4
x° —a?
Example 2. Find lim ————
x—>asin(x—a)’

. . . 0 : :
Solution. Here we have the indeterminate form {6} Using L'Hospital’s

rule we obtain

_ x?-a® 0 : (xz — az) : 2x 2a
Im ———— =<—+=1Im - = lim =—=2a.
x—asin(x—a) x>a(sin(x—a)) x—~acos(x-a) 1
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This result is obtained analogously to the previous example.

Example 3. Find lim (1+cos X)Z/COSX.

V4
X—>=
2

Solution. In this case we have the indeterminate form {1"0 } To evaluate

: T T T
it we can use the substitution y = 5 X then y >0 as X — —. And we re-

write this limit in terms of a new variable

lim (L+cos )% = fim (L+sin y)25"Y =¢?,

X— y—0

2
2

since (mom a(x))/ ) = gk

15. Increase and Decrease of a Function. Necessary and
Sufficient Conditions for an Extrimum of the Function

Let us apply the notion of the derivative to studying the behavior of a
function. Consider the value of a function of one variable y = f(x) in some

interval [a; b] and in some ¢ -neighborhood of a fixed point X;. Let us denote,
as before

Ay = f(xg +Ax)— f(xg).

Definition 1. A function is called increasing (decreasing) in an interval
la;b] if for any x; and x, within this interval f(x;)< f(xy) (f(x)> f(x5))
when X; < X, (Fig. 10, 11).

Definition 2. We will say that the function y = f(x) increases (de-
creases) at a point X, if there is ¢>0 such that ﬂ>0 (ﬂ<0) for

AX AX
0<|x|< ¢, that is, the quantities Ay and Ax have like (unlike) signs (Fig. 12,

13).
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Y A

Fig. 10. A function is increasing in an interval [a;b]

YA

] o -
X

Fig. 11. A function is decreasing in an interval [a; b]

Basing on the latest definition we can give another definition for local
extremum of a function.

Definition 3. The function y = f(x) reaches a local maximum (mini-
mum) of the point X, if there is & >0 such that Ay <0 (Ay>0) for [x|<0
(Fig. 12, 13).
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Y A

ixo+AX$ . iXOJFAX:
0 _& (AX<0) xp(Ax>0) & X

>

Fig. 12. The function y = f(x) increases at a point X

Y A

X +AX:

li)CO +AX§ |

0 ¢ (Ax<0) Xo (Ax>0) £

>
X

Fig. 13. The function y = f(x) decreases at a point Xj

Let us consider simple tests for an increase and decrease of a function
and also tests for a local extremum.

Conditions for increasing (decreasing) of a function are concluded in
the following theorem.

Theorem 1. If function y = f(x) has a positive (negative) derivative at

a point Xp, then it increases (decreases) at this point.
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Y A

| l | i .
| | l | |
0 | —g x,—AX Xy, Xgt+AX 4+g X

Fig. 14. The function y = f(x) reaches alocal maximum of the point X,

YA

A A
| | | ! |
0|-¢ X, —AX X X, +AX +& X

Fig. 15. The function y = f(x) reaches alocal minimum of the point X,

. A
Let f'(xy)>0, then lim A _ f'(xy)>0 and therefore, the quantity

Ax—0 AX
Ay

A_ has the same sign as f’(x) in some ¢ -neighborhood of the point Xg. In
X

Ay

this ¢ -neighborhood A >0, that is, the function y = f(x) increases at the
X

39



point Xy. The case f’(x0)< 0 is considered in a similar way.

Now we can establish a necessary condition (test) for an extremum.
A necessary Condition for an Extremum. If a function has an extre-

mum at a point Xy, its derivative at that point is either equal to zero or does

not exist.
Indeed, if the function attains a maximum at the point X, its value at

this point is the greatest in the neighborhood of this point X . It follows from

the previous theorem and from Fermat’'s theorem. The argument is complete-
ly similar in the case of a minimum.

Geometrically, this means that the tangent to the graph of a function is
parallel to X-axis at its "tops" and "cavities" (see Fig. 6 Sec. 12).

A function can also have an extremum at some of the points where it is
non-differentiable. Examples of that kind have been demonstrated in Fig. 4
and Fig. 5 (Sec. 4).

Definition 4. The points at which the derivative of the function is equal
to zero or does not exist are called critical points.

It should be noted that the necessary condition for an extremum is not
sufficient: the fact that the derivative at a given point turns into zero (or does
not exist) does not necessarily imply that this point is a point of an extremum.

3

For example, the derivative of the function y =X~ is Yy’ :3X2; it vanishes at

the point X =0 but this point is not a point of an extremum of the function
(Fig. 16).

To find out whether a given point where the derivative turns into zero or
does exist is a point of extremum we should resort to sufficient conditions
(tests) for an extremum to which we proceed now.

The First Condition for an Extremum in Terms of the First Deriva-
tive is based on the following theorem.

Theorem 2. Let the function f (x) be continuous in some neighborhood
of a point X, and has in this neighborhood a derivative satisfying the follow-
ing conditions: f'(xp)>0 (f'(xy)<0) for x>X; and f'(xy)<0
(f'(xg)=0) for X< Xg. Then the function f(x) has a local minimum (maxi-

mum) at the point Xg .
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Fig. 16. The graph of the function y = X

By Lagrange’s formula for finite increments, in the considered neighbor-
hood of the point X, we have:

f(x)— f(xg)=f'(chx—2xp), ce(X;xg).

Therefore, by virtue of the conditions of this theorem both for X > X, and
X< X, we have: f'(C)x—xp)>0 (f'(c)x—x)<0), thatis f(x)> f(xp)
(f(x)< f(xp)). Consequently, the function f(x) has a local minimum (max-
imum) at the point X .

Thus briefly: if, as X passes through the point Xg (from left to right),

the derivative changes its sign at the point X, is a point of extremum.

If the derivative changes the sign from + to —, there is a maximum at the
point X, if conversely this is a minimum.
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The conditions of this theorem can be simplified if the existence of the
second derivative is assumed.

The Second Sufficient Condition for an Extremum in Terms of the
Second Derivative is concluded in the theorem.

Theorem 3. Let the function f(x) have a derivative f'(x) in
the neighborhood of the point X; and a second derivative f”(x) at the point
Xo itself. If f'(xg)=0 and f"(xg)>0 (f"(xy)<0), then the point X, is a
point of a local minimum (maximum) of the function f(x).

Since the derivative f’(x) exists in the neighborhood of the point Xg,

the function f(x) is continuous in this neighborhood.
Let us show that the conditions of Theorem 2 are completely fulfilled.
Since f"(xq)>0 (f"(xp)<0), the function f’(x) increases (decreases) at

the point X;. In addition, f’(xo): 0 and, therefore, in some neighborhood of
the point Xy, we have: f'(x)>0 (f'(x)<0) for x>x%, and f'(x)<0
(f'(x)>0) for X< Xq. Thus, it follows from Theorem 2 that for X =X, the
function f(x) has a local minimum (maximum) at the point X;.

Remark. If f'(xy)=0 and f"(xy)=0, then the problem remains un-

solved and it is necessary to resort to the First Condition.
Let us consider several examples.
Example 1. Find intervals of increasing and decreasing of the function

y = f(x)=x-2sin x, xe[0;27].

Solution. Let us find the derivative Yy =1—2c0sX. It is evident that

y'>0 in the interval (%%) and Yy <0 in the interval (O;%) and

(5?7[;2%). Thus this function increases in the interval (%%{) and de-

creases in the intervals (O;zj and (25—7[)
3 3 3

Example 2. Find the point of a local extreme of the function
y=f(x)=x%"" and a>0,3>0,x>0.
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Solution. Since Y =x%"e ™ (ar— fX), we have y' =0 for x=2,

y' >0 for X <%, y' <0 for x> ¢ Therefore, the point X = %isa point of

maximum for the function y = x%e

Example 3. Find the extremum of the function Y = x\1-— x°.

Solution. This function is defined as X €[-1;1]. Let us find the deriva-
. , 11— 2%
tive y' = >
1-x

1 1
If V' =0 then 1— 2x2 =0, whence X, =——=, X, =—— (critical points);
y 1 \/E 2 \/5 ( p )

y' =00 as X ==1. These points are bound points of the domain of the defini-
tion of the function.

2
_ o , XI2X° =3
Let us find the second derivative Yy = l—s) Now we compute the
ok

values of the second derivative at the critical points. When X, :_ﬁ’ we

Al

have

-5

hence in accordance with Theorem 3 we conclude that the function has

a minimum Yy —y( 1)— 1atthepointx— L
min — _ﬁ ——5 1——ﬁ.

1
When X, = NS we have
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i.e. the function has a maximum Yo = y(%) :% at the point X, = %

There is no extremum at the critical points X ==1 since the points of
the extremum can be found only at interior points of the domain of the defini-
tion of the function.

Example 4. Prove that a’+b?+c?<ad+pd+cdif a>0b>0,c>0,

abc =1.
Solution. Let us

f(x)=a*+b*+c*, f'(x)=a*ina+b*Inb+c*Inc,
for which we can tell only that

f'(0)=a’lha+b°hb+c’Ihc=lha+Ihb+Ihc=Inabc=I1=0.

However, the second derivative is f"(x)=a*In“a+b*In°b+c*Ih?c,
which is clearly positive. We thus deduce that f’(x) is increasing, and so

f'(x)> £'(0)=0, for x>0, therefore f(x) itself is increasing for x >0, and

the conclusion follows: f(2)< f(3)=a®+b*+c®<a’+b>+c°.

Example 5. Determine the most economical dimensions of a closed cy-
lindrical cistern of the given volume V with the least total surface.

Solution. Denoting the radius and the altitude of the cistern in terms of
R and H and its total surface as S, we obtain

S =27RH + 27R?.
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Here R and H are not independent variables but they are connected with
the relationship

V = 7R%H

since according to the condition this cistern should have the given volume.
We determine the altitude H by this relationship

Vv

H :R.

Substituting H into the expression of total surface we get

S =27IRL2+271:R2 =2(TCR2 +\Lj . where 0<R<+o0,
R R

Thus writing down S = S(R) we find its least value as 0 < R < o0
S’(R)=2(2nR—izj:O, or 27R =12:> R= ,3/1 and
R R 21
\Y _ 5|V
(V j2/3 T
P
2

This radius R is found in the considered interval

H =

S"(R)= 2(2% + 213) and S”£3 ij =127 >0.
R 2r

'V
Whence it follows that R =3 2— is the point of minimum. The function
T
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S =S(R) is continuous VR &(0;+) therefore the single minimum coin-

cides with its least value in this interval. So R = ,/ and H = ,/ are the

most economical dimensions of the cistern.
16. Finding Greatest and Least Values of the Function

Let the function y = f(x) be continuous on a closed interval [a;b]. In

order to determine the greatest value and the least value of the function the
values of the function at the points of extremum should be compared with
each other and with the end-point values. For the greatest (the least) value of

the function on the interval [a;b] is either one of its maximum (minimum) val-

ues or an end-point value.
Example 1. Determine the greatest and the least values of the function

y=x>-3x"-9x+35, xe[-4/4]

Solution. First of all let us find the critical points or the points at which
the first derivative is equal to zero:

y=3x’-6x-9=0=x,=-1x,=3, x,€[-4;4] andx, e[-4,4];

y(x)=Yy(~1)=40, y(x,)=y(3)=8.

Now we compute the values of the function at the edges of the segment

y(-4)=41, y(4)=15.
Comparing all the values of the function at the interior critical points and
its values at the edges we can draw the following conclusion.

The greatest value of the function in the interval [— 4, 4] is equal to 40

and it attains at the interior point X = —1.
The least value is equal to —41 and it reaches at the left-hand edge of

the segment |- 4;4] that is the point x =—4.
The approximate graph of this function is represented in Fig. 17.
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Fig. 17. The approximate graph of the function y(x)

17. The Direction of Convexity and the Point of Inflection of
a Curve

We begin with the following definition.
Definition 1. A curve Yy = f(x) is said to be convex upward (down-

ward) at a point X if there is a neighborhood of the point X, such that for all
of the points the curve y = f(x) is situated below (above) the tangent to the
curve at the point Xg.

For instance in Fig. 18 the curve y = f(x) is "bulging downward" at the
point x; and is "bulging upward" at the point x».

Definition 2. A point X, is said to be a point of inflection of a curve

y= f(x) if, when X passes through the value X; the moving point of the
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curve passes from one side of the tangent at the point X, to the other side.

y A

Fig. 18. The curve y = f(x) is "bulging downward" at the point x;

and is "bulging upward" at the point x,

In other words a point of a curve separating its convex arc from a con-
cave arc is termed a point of inflection. For instance, in Fig. 18, the point x3 is

a point of inflection of the curve y = f(x). At the point of inflection the tan-

gent intersects the curve, in the vicinity of such a point the curve lies on both
sides of its tangent drawn through that point.

Let us indicate basic test defining point of convexity upward (downward)
and point of deflection.

Theorem 1. If the second derivative f”(x) is everywhere negative

(positive) within an interval, the arc of the curve y= f(x) corresponding to

that interval is convex upward (downward or it is concave).

We present this theorem without proof but we note that it is contained in
many textbooks in higher mathematics. From the above argument and Theo-
rem 1 the necessary and sufficient tests (conditions) for a point of inflection
follow.

The necessary condition for a point of inflection: at this point

y" = f"(xy)=0 or does not exist.
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It should be noted that by for not every root of the equation f"(x): 0is
the abscissa of a point of inflection. For example, the first and the second de-

rivatives of the function y=x* are y':4x3 and y”:12x2. Although

y"(x9)=0 — Xy =0 the point (0;0) is be the vertex of the parabola y = x*

and does not serve as its point of inflection.
In order to find out the point of inflection there is a sufficient test which
is contained in the following statement.

If the second derivative f”(x) changes sign as x passes through X,
(from left to right), then X, is the abscissa of the point of inflection. If it

changes sign from — to +, there is an interval of convexity upward on the left
of the point Xy and an interval of concavity on the right of it (convexity down-

ward), and, conversely, if it changes sign from + to —, an interval of convexity
downwards follows an interval of convexity upward as x passed through Xj.

Example 1. Investigate the direction of convexity and find the points of
: : 1
inflection y =arctg —.
X

Solution. Let us find the first derivative

P A
1+i X2 1+x%

It is a negative value for VX e (— oo;+oo). Then the function decreases

along the whole numerical axis.
The second derivative

Y"=—2x x y"=0= as x=0.

1
(1+ 2)
X
It is evident that for X <0 y" <0, then the graph of the function is con-

vex upward (sign "N") and VX e(0;+oo) the graph of the function is convex
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downward (sign "U"). Consequently, according to the sufficient test X, =0 is
the abscissa of the point of inflection. And the interval VX e (— 00, 0) is the in-

terval of convexity while the interval VX € (O; + oo) is the interval of concavity.

18. Asymptotes of Curves

Sometimes, the notion of asymptotes is useful when the graph of a
function y = f(x) is investigated.

Definition 1. A straight line y=kx+Db is called an asymptote to a
curve y = f(X) as x — +o0 (x —> —o0) if

lim (f(x)—(kx+b))=0.

X—>+o0

This is the definition of the inclined asymptote.
Let us give the necessary and sufficient conditions for an asymptote to

exist. Let there exist an asymptote y=kx+b to a curve y=f(x) as
X —> +o0. Then

lim f(X)_(kX+b)=O, whence k= lim f(X).

X—>+00 X X—>+00 X

Given k , we can find b from the equality b= lim (f(x)-kx). The converse
X—>*oo

is also true: if the limits kK and b exist, then a straight line y =kx+b is an

asymptote to the curve y = f(x) as x — +o0o. The condition for an asymptote

to exist as x — —oo is formulated and proved in a similar manner.
In the case, when k=0 and the equation of an asymptote is y =D,

then we have a so-called horizontal asymptote. If

lim f(x)=+00 (or —o0)or lim f(x)=-+o0 (or —o0),
x—a+0 x—>a—0

the curve y = f (X) is sometimes said to have a vertical asymptote for X =a.
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Example 1. Are there asymptotes for the curve of the function
y = f(x)=xarctan x?

Solution. The equation of asymptotes y =kx+Db, and

= im ) b m (F(x)- k).

X—to X X—>to0
For this function

i f(x ] X arctan x ] T
k= lim L): Im ——— = lm arctanx=+-—.
X—>+oo X X—>+00 X X—>+00 2

Then

b= lim (f(x)—kx)= lim (x arctan x —(i %D = lim x(arctan XF %) =0.

X—>+o0 X—>+o0 X—>+00

Thus, the curve of the function f(x):xarctanx has asymptotes

y—zx and y——zx
2 2

19. A General Scheme for the Investigation of the Graph of
a Function

Above we have considered the methods for a qualitative investigation of
functions and their graphs. Now we may recommended the following scheme
for investigation of graphs:

1) find the domain of the definition and the range of values of a given
function (if possible);

2) find the points at which the graph intercepts the axes of coordinates;

3) determine the character of symmetry of the graph, that is whether the
function is even or odd (or neither);

4) determine the periodicity of the graph;
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5) find the points of discontinuity, clarify their character and find vertical
asymptotes;

6) by the sign of the first derivative, find the intervals of increase and
decrease of the function and its points of extremum;

7) by the sign of the second derivative, classify the points of extremum,
find the intervals of convexity and concavity and the possible positions of in-
flection points;

8) determine the behavior of the function at infinity and its inclined ( and,
in particular, horizontal) asymptotes and draw an approximate graph of the
function.

If the computation of some derivatives and the determination of their
sings involve many difficulties, then some of the above items may be omitted
in the process of investigation.

Example 1. Investigate the graph of the function:

Solution.
1) The domain of the definition of the function:

the intervals X € (—o0;—-1) U (=1;1) W (1;+00),
the range of values Y € (—o0;+c0).

2) x=0; y =0 is the point of intersection with axes of coordinates.

3) Since f(—x)=—f(x), this function is odd. Then it is sufficient to in-

vestigate the graph of the function for X € (0;+00).

4) For X€[0;1) we have y<0 for X< (1;,+) we have y>0. For

x =1 the function has a vertical asymptote (a point of discontinuity of the
second kind).

X ) X2
=—o0, Iim

lim 5
x—1+0 X< =1

x—1-0 x2 -1

= 400

x =—1 is also the equation of the vertical asymptote since the function is odd.
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y = X (x* - -2xx> 3x*-3x"-2x"  x-3*  XP(x*-3)
5) (XZ _1)2 (X2 _1)2 (XZ _1)2 (XZ _1)2 ’

For x; =0, x, =—/3 and x3=\/§, y'=0. For Xe(O;x@) we have

y' <0 that is the function decreases, for X e (\/5; +0), y' >0 the function
increases.

33

Therefore, x3 = J3isa point of minimum  Ypin (\ﬁ) = T ~ 2,99.

For x € (— \/§;O), y’' <0 and we can see that passing through the point

x1 =0 does not change the sign, therefore there is no extremum at the point

X1 = O
Since the function is odd the point x, =—/3 is the point of maximum
3J'
and ymax ('\/§) - _2,55.

. [ x*-3x7 ’ 2x(x2+3)
Oy Ty

For x=0, y"=0 and for x=-1 and x =1 does not exist. Therefore,
x =0, x4, =-1, x5 =1 are the points of possible inflection.
Passing through the point x; =0 in the interval x e(—11) y" changes

the sign from "+" to "-" that is the function is convex downward in the interval
X € (-1;0] and the curve of the function is convex upward for X e (O;l). The

point x; = 0 is the point of inflection.

For x>1, y" >0 and the function is concave that is the point x5 =1 is

also the point of inflection. Analogously x4 =—1 is the point of inflection be-
cause the function is odd.
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. f(x : x> . X : 1
7) Since k = Iim L)= lim = lim = Im ——=1
X—>too X x—>iooxix _1’ X—too X< =1 X—)iool_i

X2
and
1
X ¥
b= lim (f(x)—kx)= lim [ 5 —1)= lim — im —%.-=0
X—>*o0 X—too| X< =1 X—>too X< —1 X_)iool_i
2
X

for X — %00 the function has the asymptote y = X.

VA v

; >
~J3 -1 1 J3 X
3
Fig. 19. The graph of the function y = f(x)= 24
X —

It is convenient to place the results of the investigation into the following
table.
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Table 1

x |0 | (01) 1 /3 J3 (v/3;+ o)
y' |0 — does not exist — 0 +

y" | 0 — does not exist + + +

Y | O \' N does not exist \' U | Ymin =295 / U

The arrow | in this table indicates the decreasing function and 1T indi-
cates the increasing function. With the aid of this table we can plot the graph
of the function (Fig. 19).
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Individual tasks
1 - 4. Find the first and the second derivatives of the given functions.

5. Find the greatest and least values of the function.
6, 7. Investigate the graph of the function.

8. Find an equation of a tangent and a normal to a function at a point.
9, 10. Find limits using L'Hospital’s rule.

Variant 1

1) y=arctanVx>-1; 2) y=xsin?4x;

arcsin x
3 y= ; 4) el =4x-Ty;

In x
3 J—
5) y=in(x2-2x+2), [0;3 ) y:i_igfé;
x_
7)) y=xhx; 8) y=+x—4, xq=8;
2
gy Jm Xz ! 10) lim (cos /5",
2% n (ex +1) x—0

Variant 2

3 . 2
1) y=Incos—; 2) y= 1+sin?x;

X
5 arctan2x oo 4 . X =arcsin 2t
) y=e tan 4x; ) y = arccos 2t
3x x?
5) Y= ,10;5]; 6 = :
) 2. (05 ) Y=,
2
7) :3—x : 8) y=x3—2x2+4x, Xg=2;
X+ 2
. 2
9) lim xIn®x; 10) lim (cos 4x)]/X .
X—0 X—0
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1)

3)

5)

7)

9)

1)

3)

5)

7)

9)

COS2 X,
1)

y=e
y:amman4+ﬂ

[-2;0]

y=xe",
1

y=x+=;
X

. eX—e*
im ——;
x—0SIN XCOS X

y:V1+m2x;

1
y="0+
X

XZ

. " —C0SsX
Iim ——MM;
x—0 SIn X

Variant 3

2)

4)

6)

8)

10)

Variant 4
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2)

4)

6)

8)

10)

2

y= A
x2 -1
Xy =ctg(x—y);
4 3
y=2 - _3x?_5:
4 3
y =3tg2x+1, xo:%;
- (1)@ 2X
lim| = :
Xx—0\ X
_arcsin tg2x |
-
X =2c0s>t
y:25m3t’
J— 3x .
Jx-1
X3 x?

=———+X+4, xy=1;
y 3 o 0

lim (sin 2x)".
Xx—0



1)

3)

5)

7)

9)

1)

3)

5)

7)

9)

y — e—SInX
y= 1
arcsin In x

In x

y=7’ [1;4]i

y=x+€ "

. Insin7x
lim - :
x—01In sin 2x

Vx? +1

X

arcsin 4x .

y=e

y =108x — x*,

X

y=Xxe 2;

lim xctgnx;
X—0

arctan 2x;

-1 4];

Variant 5

2)

4)

6)

8)

10)

Variant 6

2)

4)

6)

8)

10)
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y=xVﬁ+7;

y® =tg(x+y);

x+1
(e-1

y=—3x2+4x+7, Xo =-1,

I|m Xsin 2X
Xx—0

y=sm24xmx;

x:mﬁ2+4)

y—amml’
2



1)

3)

5)

7)

9)

1)

3)

5)

7)

9)

_sm23x_
3

y =4/arctg4x ;

y= 2x3 —3x% —12x +1,
[-2;2.5];

x 0
y=—-,
In x

lim arcsin xcrgx;
Xx—0

y = X3etg 3X.

y =arcsin V1-x?;

y=x-2Inx, [Le]

1+1In X

X

lim (1- cos x)ctgx;

x—0

Variant 7

2)

4)

6)

8)

10)

Variant 8
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2)

4)

6)

8)

10)

y = In cose?*:

sin y:xy2 +5;

y = 5x? _
x> +1

y =9x—x?, Xo =3;

lim (1-cosx)".
x—0

y =In sin X2 +1;

(X: ¢
) t2+1;
1
YT
_ 2x
y_l—x2

y=2x>—4x* —5x-3,
Xo=2;

im (x+2°}*.

X—>00



1)

3)

5)

7)

9)

1)

3)

5)

7)

9)

arctg®x )
y = In tge*; 4)
yzlx4—gx3——x2+2
4 3 6)
[-2;4]
y=x+ i 8)
33
. In(x-1)
im ————; 10
X—0 e2x . e—2x )
Variant 10
5
y = In> x 2)
X
y = paresin Jx | 4)
5
X~ —8
y= 4 [_ 3’ _1] 6)
X
y=1In (x2 +4); 8)
o9X
jm & X1, 10)
x—>0  sin“ 3X

Variant 9
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y=x3+2x+1,

jim (tg—xjj/xz |

Xx—>0\ X

y:xzsin23x;

X = ctg3x
y = 1
sin 3t
_x2+6.
x2-1

y=x2—5x+8,

lim (sin ).
X—0

xO:3;



Theoretical questions

1. An increment of a function.
2. A derivative of a function.
3. Velocity of rectilinear motion.
4. Right-hand and left-hand derivatives.
5. The notion of a differential.
6. A linear part of an increment of a function.
7. A production function and a marginal cost.
8. A coefficient of elasticity.
9. The Geometrical meaning of a derivative: a tangent and a normal to a
function.
10. A differential function at a point.
11. A continuous function.
12. A point of inflection.
13. A derivative of a sum, a product and a quotient.
14. A derivative of a composite function.
15. A derivative of two inverse functions.
16. A parametric representation of a function.
17. Derivatives of elementary functions.
18. A derivative of an implicit function.
19. Logarithmic differentiation of a function.
20. Applying a differential to approximate calculations.
21. A derivative of the second order.
22.Physical interpretation of the second derivative.
23. A differential of the second order.
24. Derivatives and differentials of higher orders.
25. A local minimum and a local maximum.
26. Fermat's, Rolle's, Cauchy’'s and Lagrange’s theorems.
27.Indeterminate forms. L'Hospital’s rule.
28. Increasing and decreasing functions.
29. Necessary and sufficient conditions for an extremum of the function.
30. Finding the greatest and least values of a function.
31.Direction of convexity. Necessary and sufficient conditions for a point of
an inflection of a function. The notion of asymptotes.
32. Necessary and sufficient conditions for an asymptote to exist.
33. A general scheme for the investigation of the graph of a function.
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