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The sufficient theoretical material on the academic discipline "Higher and 

Applied Mathematics" and typical examples are presented to help students to 

master the material on the topic "Differential Calculus of a Function of One 

Variable" and apply the obtained knowledge to practice. Individual tasks for self-

study work and a list of theoretical questions are given to promote the im-

provment and extension of students’ knowledge on the theme.  

Recommended for full-time students.  
 

 

 

 

 

Викладено необхідний теоретичний матеріал з навчальної дитсци-

пліни "Вища та прикладна математика" та наведено типові приклади, які 

сприяють найбільш повному засвоєнню матеріалу з теми "Диференціа-

льне числення функції однієї змінної" та застосуванню отриманих знань 

на практиці. Подано завдання для індивідуальної роботи та перелік тео-

ретичних питань, що сприяють удосконаленню та поглибленню знань 

студентів з даної теми.  

Рекомендовано для студентів денної форми навчання. 
 



 5 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS 

 

 

Guidelines 

to practical tasks in differential calculus 

on the academic discipline  

"Higher Mathematics"  

for full-time foreign students and students taught in English  

 

 

 

 

Compiled by               Ie. Misiura  

 

 

 

 

 

 

 

 

Chief of the department              L. Malyarets 

 

 

 

 

 

 

 

 

 

 

 

 

Харків, Вид. ХНЕУ ім. С. Кузнеця, 2018 



 6 

Introduction 

 

 Differential calculus plays a very important rule in economics in particu-

lar in problems concerning the optimum, management and plans. Therefore 

the deep knowledge in this division in higher and applied mathematics is nec-

essary for modern economists.  

 In guidelines in brief form only the most principal topics of differential 

calculus are stated.  

The present guidelines are the continuation of the one part where no-

tions of limits and continuity of functions had been regarded. By means of 

these notions we can introduce the notions of derivative and differential of a 

function which are one of the most fundamental in mathematics.  

 

Guidelines for Differential Calculus of  

a Function of One Variable 
 

1. Derivative and Differential 

 

 Let’s begin with considering one of the problems using the notion of 

the derivative.  

 Velocity of rectilinear motion. Let a point move in a straight line which is 

taken as a number scale and let the law of variation of the coordinate s  of 

the moving point as function of time to be known  tFs  .  

 During time interval t  from time moment t  to tt   the coordinate of 

the point gains the increment 

 

   tFttFs  . 

 

 If the motion is uniform, that is s  is a linear function of t  of the form 

tvss 00   we have tvs  0  and 0v
t

s





 is a constant velocity of the 

rectilinear motion of the point. But if the motion is nonuniform the ratio 
t

s




 

depends on both t  and t . It is then called the average (mean) velocity cor-

responding to time interval from t  to tt  . Denoting is avv  we can write 
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t

s
vav




 . Passing to the limit as 0t  we come to the definition of 

the velocity of rectilinear motion at the given moment that is  

 

   
t

tFttF

t

s
vv

tt
av

t 









 000
limlimlim . 

 

 Now we may give a definition of the derivative of a function.   

 Definition 1. The limit of the ratio of the increment of a given function 

 xfy   to the increment of the independent variable as the latter tends to 

zero is called the derivative of that function (provided that this limit exists): 

 

 
   

x

xfxxf
xf

x 




 0
lim . 

 

Leibnit’z notation of the derivative is 
 

dx

xdf
 or 

dx

dy
.  

 The particular value of the derivative  xf   at a given point 0х  is usual-

ly denoted by  0xf   or 
0xx

y


 . 

 Now we can see the connection between the derivative of the function 

and the velocity of rectilinear motion at the given moment t . 

 In general case the derivative of a function can be interpreted as 

the rate of change of a function  xf  at a given point х  that is the limit of 

the average rate of change of that function in the interval  ххх ,  as х  

tends to zero ( on condition that this limit exists). 

 Now let’s introduce the notion of left and right-hand derivatives at 

the point 0х : 

  
   

x

xfxxf
xf

x 







00
lim  is the right-hand derivative; 

 
   

x

xfxxf
xf

x 







00
lim  is the left-hand derivative. 

 There is such a statement. The function  xf  has the derivative at the 

point 0х  if its left- and right-hand derivatives coincide.  
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 The notion of differential is closely related to the notion of derivative. 

Let’s consider the notion of differential. Since 
 

 0
0

0
lim хf

x

xf

x







, this im-

plies 
 

  



0

0 хf
x

xf
, where   is an infinitesimal as 0х . It follows 

that     xxхfxf  00 , i. e.      xoxхfxf  00 , where  хo   

is an infinitesimal of higher order than х  as 0х  and  0xf   is a con-

stant. Then the quantity   хxf  0  is the linear part of the increment of the 

function. And now we can present a definition of the differential. 

 Definition 2. The principal linear part   хxf  0  of the increment  xf  

of the function which is proportional х  is called the differential of 

the function. The differential of the function is denoted as  xdf  or dy  if 

 xfy  . 

Thus, the differential and the derivative are connected by 

the relationship   xxfdy  . The increment х  of the independent variable 

is called its differential and denoted by dx , where xdx  .  

This is coherent with the general definition of the differential since for 

the function xy    we have  

 

xxxdxdy   that is xdx  . 

 

Thus, the differential of the function is equal to its derivative multiplied 

by the differential of the independent variable: 

 

 dxxfdy  . 

 

2. Economic Significance of the Derivative 

 

 In practice of economic investigations the so-called production functions 

are widely used for revealing of relationships between the output of produce 

and resources input, for prognostication of the development growth of indus-

try, for solution of optimum problems and others. 

 In supposing of differentiability of production function the differential 

characteristics, connected with the notion of the derivative, gain an important 
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meaning. For instance, if the production function  xfy   establishes 

the relation of the output of produce y  on resources input x , then  xf   is 

called the marginal product, if  xfy   asserts the relation of the cost of 

production y  on the output of produce x , then  xf   is called marginal cost. 

 The characteristic of the relative change of the function increase 

 xfy   to be relative small increase of the argument x  is called the coeffi-

cient of elasticity. The coefficient of elasticity is defined by the formula 

 

:
dy dx x

E E y .
y x y

 or  

 

 This coefficient is widely used in investigations of consumers commodi-

ty demand in the dependence on prices of the commodities and incomes of 

population.  

 The high coefficient of elasticity means the weak power of the consum-

er’s saturation and the low coefficient indicates to the large insistency of this 

saturation. 

 Now we proceed to the geometrical meaning of the derivative and the 

differential. 

 

3. The Geometrical Meaning of the Derivative. The Tangent and 

the Normal to a Line. The Geometrical Significance of  

the Differential 

 

 Let’s consider the graph of the function  xf  and draw a straight line 

passing though points  000 , yxM  and  111 , yxM . It will be called the se-

cant passing through these points (Fig. 1). The points of the secant with co-

ordinates  yx,  satisfy the equality  

 

s
xx

yy

xx

yy
tan

01

01

0

0 








, 

 

where   is the angle between the secant and the х -axis. Let us rewrite 

this equality as follows: 
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 0
01

01
0 xx

xx

yy
yy 




 . 

 

y

1y

0х

0y

1х
х0



T

0M

1M

 

Fig. 1. The graph of  xf  and the secant passing through 0M  and 1M  

 

Now we give the following definition. 

Definition 3. The straight line which is approached in the limit by 

the secant as 01 xx   will be called a tangent to the curve  xfy   at 

the point (in Fig. 1 that is denoted as 0M ). 

We can show that for the function  xf  having the derivative at the 

point 0x  the tangent exists. Indeed, in this case 01 yyy   and 

01 xxx    

 

   
 0

01

01

01

01

0 0101

limlimlim xf
xx

xfxf

xx

yy

x

y

xxxxx

















. 

 

So the equation of the tangent to the graph of the function  xfy   at 

the point 0x  has the form: 

 

    000 xxxfxfy  . 
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Here  

 0
01

01

0101

limtanlimtan xf
xx

yy

xx
s

xx








 , 

 

where   is the angle between the tangent and х -axis.  

Thus we can give the following definition. 

Definition 4. The value of the derivative  0xf   is equal to the slope of 

the tangent line to the graph of the function  xfy   at the point with abscis-

sa 0x . 

Here it is convenient to present the definition of the normal to a curve. 

Definition 5. The straight line passing through the point  000 , yxM  

perpendicularly to the tangent line at that point is called the normal to 

the curve at its point  000 , yxM  (Fig. 2). 

 

y

0х

0y

х0

M

0M

N

T

 

Fig. 2. The normal NM0  to the curve of  xf  and the tangent MT  

 

By the definition it follows that the slope of the normal to the curve at 

the point  000 , yxM  being equal to 
 0

1

xf 
 , the equation of the normal 

can be written in the form:  
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 
 

 0
0

0

1
xx

xf
xfy 


 . 

 

(In Fig. 2 the normal is denoted by NM0 ). 

The notion of the differential of a function was explained above now 

let’s introduce its geometrical interpretation (Fig. 3). 

 

y

х xх  х0



T

M

'M

dy

y

R

 

Fig. 3. The geometrical interpretation of the differential of  xf  

 

Since   tan xf   (   is  the  angle  between  the  tangent  MT  and  

x -axis) the differential  dxxfdy   is equal to the length of the line segment 

RT  that is the differential dy  of a function  xfy   at a point x  is equal to 

the increment of the ordinate of the tangent line drawn to the graph of 

the function at its corresponding point.  

The increment of the function  xf  is equal to the increment of the of 

the ordinate of the graph of the function (i.e. to the line segment MR  in 

Fig. 3) and therefore the difference between the increment of the function and 

its differential is equal to the length of the line segment TM   lying between 

the tangent and the graph. This line segment is an infinitesimal of higher or-

der than the segment MR  as 0x . For a concrete finite value of the in-

crement x  of the differential of a function may be greater or less than its in-

crement. 
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4. Condition for Differentiability of a Function. Relation  

between the Notion of Differentiability of a Function  

and its Continuity 

 

Definition 6. The function is called a differentiable function at the point 

0x  if the derivative or the differential of the function exists at this point. 

The process of finding the derivative or the differential of a function is 

referred to as the differentiation of the function.  

Let’s show the relation between the notion of differentiability of a func-

tion and its continuity, which is connected in the following theorem. 

Theorem. A function  xf  differentiable at a point 0x  is continuous at 

this point. 

Let      xoxхfxf  00 . Then  

 

     


0
0

0 limlim
0

xfхfxf
xxx

 

 

       0
00

00 limlim хfxoxхfхf
xx




. 

 

Since,    0
0

lim хfxf
xx




 hence this differentiable function is continu-

ous at the point. 

The converse statement is not true. The continuity of the function does 

not involve the differentiability of a function. 

For instance, the function xy   is continuous throughout Ox  but has 

no derivate at the point 0x .  

Indeed, we have xxxy   and the substitution of 0x  yields  

xy   whence 
x

x

x

y









.  

We see that 1









x

x

x

y
 for 0х  and 1










x

x

x

y
 for 0х . 

Therefore, the ratio 
x

y




 has no limit as х  tends to zero arbitrarily, which is 
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equivalent to the nonexistence of the derivative at the point 0x . This fact is 

also clear from the geometrical point of view: the graph of the function xy   

is a broken line (Fig. 4) with a corner point at the origin  0;0  and there is of 

course no tangent line to the graph of that point.  

 

y

xy 

0 x

 

Fig. 4. The graph of the function xy   

 

A more general case of a corner point is presented in Fig. 5, where 

the curve has no single derivative but has two different derivatives at the point 

A  – a left- and right-hand derivative  

 

1
00

lim k
x

y

x







,   2

00
lim k

x

y

x







. 

 

The tangent rays emanate from this corner point with slope 1k  and 2k .  

It can also happen that the graph of a continuous function has a tangent 

at a given point but the derivative of the function does not exist at that point.  

This is the case when the tangent is perpendicular to the axis of abscis-

sas.  

In this case the function  xf  is said to have at a given point 0x  an in-

finite derivative equal to   or   if  
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




 x

y

x 0
lim       or      





 x

y

x 0
lim . 

 

Examples of such points are shown in Fig. 6. 

 

y

x0 x

А

 
Fig. 5. More general case of a corner point 

 

y

1y

0x

B

0

0y

1x

C

x

 

Fig. 6. The function  xf  with infinite derivatives 

 

The point B  is called a cuspidal point or cusp. The cusp is a particular  
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case of a corner point. And C  is called a point of inflection. Both these points 

have vertical tangent lines. 

At last it should be remarked that the function is termed a differentiable 

on an interval if it is differentiable at every point of this interval. 

 

5. Properties of Derivatives and Differentials 

of Functions of One Variable 

 

1. If the function  xf  is equal to a constant then its derivative is equal 

to zero, that is   constСxf  ,   0 Сxf . It follows from the fact that 

function   Сxf   has no increment for all variations of x , 

 

  0 Сxf . 

 

The rest properties are included in the following theorems. 

Theorem 1. Let functions  xu  and  xv  have derivatives at a point x  

then at this point also exist the derivatives of function    xvСxuС 21   ( 1С  

and 2С  constants),    xvxu  , 
 
 xv

xu
 (for   0xv ). 

Theorem 2.         xvСxuСxvСxuС 


 2121 . 

 

The derivative of a sum of two or a finite number of functions is equal to 

the sum of the derivatives of the summands. 

 Theorem 3.             xvxuxvxuxvxu 


 . 

 

The derivative of the product of two functions is equal to the sum of the 

product of the derivative of the first function by the second function and the 

product of the derivative of the second function by the first function. 

Theorem 4. 
 
 

       

  2xv

xvxuxvxu

xv

xu 












,   0xv .  

 

The derivative of the quotient of two functions is equal to the function 

whose  
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denominator is equal to the square of the divisor and the numerator is equal 

to the difference between the product of the derivative of the dividend by the 

divisor and the product of the dividend by the derivative of the divisor.   

This theorem is given without proof but it should be noted this proof is 

based on the definition of the derivative. There are corresponding formulas 

for differentials. 

Since   vuvu 


 , then multiplying both sides of the relation by dx  

we obtain  

1.   dvduvud  . 

Since   vuvuvu 


 , then multiplying of both sides by dx  leads 

to 

2.   udvvduvud   and in particular   CduCud  , 0dC . 

Taking the formula 
 
 

       

  2xv

xvxuxvxu

xv

xu 












 and multiplying its both 

members by dx  we receive 
22 v

udvvdu

v

dxvuvdxu
dx

v

u

v

u
d
























. 

All these properties for derivatives and differentials are recommended 

for remembering. 

 

6. Differentiating Composite Functions. 

Invariance of the form of the Differential 

 

The notion of a composite function was given in the guidelines "Intro-

duction to Analysis". There is the following theorem for differentiation of such 

a function. 

Theorem. The derivative of a function is equal to the product of the de-

rivative of the given function with respect to the intermediate argument by the 

derivative of this argument with respect to the independent variable. 

Let  ufy   and  xu  . It is required to prove that 

     xufuufy  .  

Let x  receive an increment x . This results in an increment u  of the 

intermediate argument  xu   which in its turn, generates an increment y  
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of the magnitude y . To find y we must compute 
x

y

x 



 0
lim  as 0x . Let 

us represent the ratio 
x

y




 in the form 

x

u

u

y

x

y














. According to the rules 

for passing to the limit in a product we can write 

 

x

u

u

y

x

u

u

y

x

y

xuxx 































 0000
limlimlimlim , 

 

where 0u , as 0х , since  xu   is a continuous function. 

Since 

 

 uf
u

y

u






 0
lim     and     x

x

u

x






 0
lim  

 

we arrive at the desired formula. 

Applying this theorem for the differential of a composite function, we 

have 

 

            duufdxxufdxxfxdf 


  , 

 

where  xu  . The obtained relationship shows that the differential 

and the derivative of the composite function   хfy   are related to the 

differential of the dependent variable  xu   in the same way as is the case 

when u  is an independent variable. This property is known as invariance of 

the form of the notation of a differential.  

 

7. Differentiating Inverse Function and  

Functions Represented Parametrically 

 

Let  хfy   and  yх   be a pair of mutually inverse functions. The 

function  yх   can be obtained by resolving the equation  хfy   with 

respect to х . For definiteness let the derivative  хf   be known and it does 
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not turn into zero. In this case the function  yх   is also the continuous 

function. 

In order to find the derivative  yхy   we use the representation of 

the derivatives in term of differentials. Then we obtain 

 

 xf
dx

dydy

dx
хy




11
. 

 

Similarly, if   0 y  then  
 y

хf



1

. Briefly, the derivatives of two in-

verse function are the reciprocates of each other that is  

 

y
x

x
y




1
    or    

x
y

y
х




1
. 

 

Now let us consider parametric representation of functions. Let function 

 

 

 







ty

tx




,       (*) 

 

be functions of one and the same variable t .Such representation is called 

parametric representation of functions. The specification of these functions 

yields a functional relationship between the variables х  and y . For with each 

value of t  (belonging to the given domain) this system (*) associates same 

value of х  and y  and thus generates a correspondence between х  and y , t  

is called a parameter.  

 Let functions  t  and  t  be differentiable on an interval ],[ 21 tt  and 

  0 t . Then the property for the differential of a composite function, which 

had been regarded above, may be conveniently used for computing the de-

rivative of a function represented parametrically. Since 
dx

dy
yx   for  tx   

and  ty   we have  tdx   and  tdy    then 
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t

t

t

t
x

x

y
y













. 

 

8. Derivatives of Elementary Functions 

 

We have considered some rules for computing derivatives of functions 

of one variable. These rules enable us to compute derivatives of any elemen-

tary functions from a knowledge of derivatives of simple elementary functions. 

Let us prove that for a derivative of simple elementary functions the following 

formulas are valid.  

The derivatives of the power function and basic trigonometric functions: 

 

1.   1
 nn nxх , 

      1
1

00
limlim 















 n

n

x

nn

x

n nx
x

xonx

x

xxx
х . 

 

2.   xх cossin 


, 

 
     

x
x

xxx

x

xxx
х

xx
cos2

cos
2

sin2
lim

sinsin
limsin

00














, 

as   xxx
x

cos
2

coslim
0




, 
 

1

2

2
sin

lim
0






 x

x

x
 (the first remarkable limit). 

 

3.   xх sincos 


, 

       xххх sin
2

cos
2

sincos 



  . 

 

4.  
x

х 2cos
1tan 


,  

 
   

xx

хxxх

x

х
х 2cos

1
cos

cossincossin

cos

sin
tan 




















. 
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5.  
x

х 2sin
1cot 


. 

 

This derivative is obtained similarly as the derivative of xtan . 

 The derivatives of inverse trigonometric functions can be found by 

means of the expressions for the derivatives of trigonometric functions, using 

the rule for differentiating inverse functions.  

 

6.  
21

1
arcsin

x
x





. 

If xy arcsin  then yx sin  and yxy cos , therefore  

 

 
22 1

1

sin1

1

cos

11
arcsin

xyyx
xy

y
x











 . 

 

7.  
21

1
arccos

x
x





. 

 

8.  
21

1
arctan

x
x





. 

 

9.  
21

1
cot

x
anxarc





. 

 

Now let us consider the derivatives of logarithmic and exponential func-

tions.  

10.  
x

х
1

ln 


, 

 
   













 x

x
x

x

xxx
х

xx

1ln
lim

lnln
limln

00
 

 
  

x
e

хx
x

х
х

x
x

x

х
х

x

xx

1
ln

1
1lnlim

11ln
lim

1

00










. 
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According to the property that symbols of the logarithm and the limit can 

be interchanged if the expression under the sign of logarithm possesses a 

limit as 0х  and recalled that  

 

 
      ex x

x








1

0
1lnlim , 

 

we obtain  

x
e

xx

x

x

x
x

x

1
ln

1
1limln

1

0








 





. 

 

11.  
ax

хa
ln

1
log 


, 

a

x
хa

ln

ln
log  , then  

axa

x
хa

ln

1

ln

ln
log 














. 

 

12.   aaa xx ln


, 
xay  , then axy lnln   whence 

a

y
х

ln

ln
  and  

 

 
 

aaay
y

a

x
ay x

y

x
x lnln

ln

ln1









 . 

 

If 1a  then   xx ee 


. 

 

The underlined formulas for derivatives of the simple elementary func-

tions are insistently recommended for remembering 

Now let us consider several examples for computing derivatives using 

the properties of the derivatives, known rules for differentiating and the formu-

las for differentiating of simple elementary functions. 

 

Example 1. Find the derivative: 
xe

x
xxy

sin
ln  . 

 

Solution. Applying the properties of derivatives, in particular theorem of 

Sec. 5, items 2,3 and 4 and derivatives of simple elementary function, we get   
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     
     

 




























2

sinsin
lnln

sin
ln

x

xx

x
e

xeex
xxxx

e

x
xxy  

 

xx

xx

e

xx

xx

x

e

xexe

x
xx

x

sincos1

2

lnsincos1
ln

2

1
2





 . 

 

Finally  

 

   xxexxy x sincos2ln5,0 5,0  
. 

 

Example 2. Find the derivative: xy tanln . 

Solution. It is a composite function. Therefore using the rule of differen-

tiating of the composite function which was given in Sec. 6 we consider xtan  

as the argument of the logarithmic function. Then we find the derivative of 

logarithmic and multiply it by the derivative of the argument, that is  

 

 
 

xxxxxx

x
xy

2sin

2

cossin

1

costan

1

tan

tan
tanln

2






 . 

 

Example 3. Find the derivative:  1sinln 2  xy . 

Solution. Acting analogously to example 2 we have 

 

     
 

 
 

 1cot2
1sin

1cos2

1sin

1sin
1sinln 2

2

2

2

2
2 














 xx
x

xx

x

x
xy . 

 

Example 4. Find the derivative: xy arctan . 

Solution. Let us find this derivative using the rule for differentiating of 

the inverse function (sec. 7) . Then yx 2tan  and  

 

   
y

y
yyyxy 2

2

cos

tan2
tantan2tan 





 , 
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Whence 

 

y

y

x
y

y
x

tan2

cos1 2




 . 

 

Since yx tan  and 

  ххy
y










1

1

1

1

tan1

1
cos

22

2
, then finally we 

have 
 хх

yx



12

1
. 

Example 5. Find the derivative: 








tby

tax

sin

cos
    20  t . 

Solution. It is parametric representation of the ellipse because 

 

1sincos 22

2

2

2

2

 tt
b

y

а

х
. 

 

Using formula (**) of Sec. 7 for the function represented parametrically, we 

obtain   

 

 

 
ant

a

b

ta

tb

ta

tb

x

y
y

t

t
x cot

sin

cos

cos

sin













 . 

 

9. Derivatives of Implicit Functions 

 

 Suppose that y  is an implicit function of x  which means that it is speci-

fied by an equation connecting the independent variable x  and the func-

tion y , the equation can not be solved with respect to y , i.e.   0, yxF .  

 Then the derivative of this function (provided it exists) can usually be 

found by differentiating (with respect to x ) both sides of the equation. In this 

differentiation it is necessary to take into account that y  is a function of x  

that is  xyy   (specified by this equation). We will illustrate by examples 

the practical significance of this rule. 
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Example 1. Let us determine the derivative of the function y  specified 

by the equation 0252  xy  (this is the equation of the parabola).  

Solution. Differentiating with respect to x  and taking into account that 

y  is a function of x  we receive 0252 yy , whence 
y

y
2

25
 .  

In this example it is not difficult to find the explicit expression for y , 

namely хy 5  or хy 5 . 

 The differentiation of these functions yields 
х

y
2

5
  and 

х
y

2

5
  

that is coincided with the result just obtained. 

Consider another example. 

 Example 2. Find the derivative:   0ln2  yxye y
.   

Solution. Differentiating with respect to x  we get  

 

0
1

222 





yx

y
yyeey yy

 or 
yxyx

yeey yy















11
2 22

, 

 

   121

11
2

2

22















yyxeyx
yeey

y

yy
. 

 

Thus, the derivative of any implicit function specified by an equation in-

volving elementary functions can be determined according to the known dif-

ferentiation rules irrespective of whether it is possible to respect the function 

explicitly. In the general case the derivative of such a function is expressed in 

terms of the independent variable and the function itself. 

 

10. Logarithmic Differentiation 

 

When computing the derivative of a function which can be represented 

in the form  

 

     x
xxfy
      0x , 
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where the base and the exponent are both functions of the independent 

variable x  is referred to as a composite exponential (or power exponential) 

function, it is convenient to use the so-called logarithmic derivative, that is the 

derivative of the natural logarithm. Indeed, for  

 

         xxxxfy
x  

lnlnlnln   

 

as a result of this operation, is  

 

    
 
 

     
 
 x

x
xxx

y

y

xf

xf
xfy



















lnlnln ,  

 

then 

 

     
 
 

         
 
 








 








 


x

x
xxxx

x

x
xxxyy

x












lnln . 

 

Logarithmic differentiation is not only applicable to finding the derivative 

of a composite exponential function but also to some other problems, for in-

stance, to computing derivatives of a product of powers of some elementary 

functions, a quotient of algebraic and transcendental functions and others. 

 

Example 1. Find the derivative: 
xxy cossin      x0 . 

 

Solution. First we find a logarithm of this function and then we use 

the logarithmic derivative xxxy x sinlncossinlnln cos   and 

 

     





xxxy x sinlncossinlnln cos
 or 

x

x
xx

y

y

sin

cos
sinlnsin

2




 

 

whence 













 xx

x

x
xy x sinlnsin

sin

cos
sin

2
cos

. 
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11. Applying Differential to Approximate Calculations 

 

The application of the differential to approximate calculations is based 

on the replacement of the increment    00 xfxxfy   of a given 

function  xf , which may depend on dxx   in a complicate manner, by 

the simpler expression  dxxf 0  (the differential) found by differentiation. 

Thus for small values of dx  we write  

 

         xodxxfxodyxfxxfy  000 , 

 

with a small relative error we can put: dyy  , then  

 

     dxxfxfxxf 000  . 

 

This approximate equality can be immediately used to solving the fol-

lowing value  xxf 0 . So      dxxfxfxxf 000  , ( dxx  ). 

Example 1. Compute 3 988.0 . 

Solution. For approximate calculation of this expression we consider the 

function   3 xхfy   and suppose that   3
0 988.0 xxf .  

The initial point 10 х  and     110  fхf , then 012.0dx .  

The differential of this function   dxxdxxfdy 3

2

00
3

1 

 . Substituting 

10 х  we obtain  012.01
3

1
dy . Considering that dyy   we get 

     dxxfxfxxf 000  , whence  

 

996.0004.01012.0
3

1
1988.0 33  . 

 

 Example 2. Compute 1.1ln . 

Solution. In this case we suppose   xхf ln  and   1.1ln0  xxf .  
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Considering that 10 х  and 1.0dx , then  
x

хf
1

  and   10  хf . Since 

     dxxfxfxxf 000  , we obtain  

 

1.01.001.011ln1.1ln  . 

 

12. Derivatives and Differentials of Higher Orders  

of Functions of One Variable 

 

The derivative of a function of one variable  хfy   is some function of 

the variable х . Therefore, we can try to find its derivative. The obtained func-

tion if it exists is called the second derivative, or the derivative of the second 

order of the function  хf . Analogously, by induction, we can introduce the 

derivatives of higher orders. 

Since  хfy   is the derivative of the first order, then 

 

   
 
2

2

dx

хfd
хfyy 

 . 

 

In a similar way we obtain the derivative of the n-th order: 

 

       
   

n

n
nnn

dx

хfd
хfyy 


 1

. 

 

Physical Interpretation of the Second Derivative. Let  tFS   de-

note the part covered by a material point during time t . Then it had been said 

above (Sec. 1), then 
   

 tF
t

tFttF

t






 0
lim  is the instantaneous ve-

locity of the point at time instant t . In the same way, we can make sure that 

the derivative 
   

 
 

2

2

0
lim

dt

tFd
tF

t

tFttF

t







 is the instantaneous 

acceleration of the point at time instant t .  
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Let us now introduce the notion of differentials of higher orders. With dx  

fixed, the differential    dxxfxdfdy   is a function of the variable x . 

The differential of this function is called the differential of the second order 

and is denoted as follows: 

 

 xfdyd 22  . 

 

If  хfy  , then  

 

 dxхfdy  ,           22 dxxfdxxfddxxfddydyd  . 

 

Analogously, using the principle of induction, we can also define differ-

ential of higher orders: 

 

      nnnn dxxfyddyd  1
. 

 

Therefore, instead of 
  xf n

 we may use the notation 
n

n

dx

yd
. 

Differentials of higher orders do not possess the invariance of the form 

of the notation which is possessed by the differential of the first order. For in-

stance,        xdxfxfd  22  . 

Let us consider examples on finding derivatives and differentials of 

higher orders. 

Example 1. Let us derive general formulas for derivatives of order n  for 

some elementary functions. 

We find by induction: 

 

  
       nn

xnx    1321  , 

 

  
 nxnx aaa ln ,      xnx ee  , 

 

  










2
sinsin

n
xx

n 
,     











2
coscos

n
xx

n 
, 
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 xy  1ln ,   
x

y



1

1
,    

 21

1

x
y


 , …, 

         

 n

n
nn

x

n
xy








1

!11
1ln

1

. 

 

Example 2. Find the differential of the second order for the function 

2

1 1
y .

x x
    

Solution. Using the general formula 
2 2d y y dx  we find 

2 3

1 2
y

х х
    , then  

 

2 2 2

2 3 3

1 2 2 х
d y dx dx .

х х х

 
    
 

 

 

13. Local Extremum. Mean-Value Theorems 

 

We begin with the following definition. 

Definition 1. We will say that the function  хfy   reaches a local 

maximum (minimum) at the point 0хх   if there is a neighborhood of this 

point    00 ;
0

ххUх  where the inequality is fulfilled. 

   хfхf 0 , 
0х

Uх  (for all х  belonging to 
0х

U ) (respectively 

   хfхf 0 , 
0х

Uх ). 

A local extremum is a general term for a local maximum or a local min-

imum.  

And now we introduce mean-value theorems, namely Fermat′s, Rolle′s, 

Cauchy′s and Lagrange′s theorems. 

Fermat′s theorem. If a function  хf  reaches a local extremum at 

a point 0х  and the derivative  0хf   of the function  хf  at the point 0х  ex-

ists then it is necessarily equal to zero:   00  хf . 
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Proof. For definiteness we suppose that  хf  has at the point 0х  a lo-

cal maximum. By the definition of the derivative we have 

 
   

х

хfххf
хf

х 






00

0
0 lim . 

Since    хfхf 0 , 
0х

Uх , then for sufficiently small 0х   

   
000 





х

хfххf
, whence passing to the limit as 0х , we receive 

that   

 

 
   

0lim 00

0
0 






 х

хfххf
хf

х
.                       (1) 

 

If 0х  then 
   

000 




х

хfххf
, therefore the limit of this in-equality 

as 0х  equals to 

 

 
   

0lim 00

0
0 






 х

хfххf
хf

х
.                      (2) 

 

From the relationship (1) and (2) it follows that   00  хf . 

This theorem is illustrated in Fig 7.  

 

x

y

0x

M

0

T

 xfy 

 
Fig. 7. The illustration for Fermat’s theorem 

 



 32 

Here MT  is the tangent at the point M  with abscissa 0х . The slope of 

this tangent is equal to zero, that is   00  хf . 

We give the rest theorem without proof but we introduce the geomet-

rical interpretation of Rolle’s and Lagrange’s theorem. 

Rolle′s theorem. If the function  хfy   is continuous on a closed in-

terval  ba; , differentiable at all the interior points of an open interval  ba;  

and assumes equal values at the end points of this interval    bfaf  , then 

there is at least one point c  inside the interval  ba;  at which   0 cf . 

This theorem has a simple geometrical significance. If the conditions of 

this theorem are fulfilled, then on the graph of the function  хfy   there is 

the point   cfc;  at which the tangent line is parallel to x -axis (Fig. 8). 

 

x

y

0 a b1с 2с

   bfaf 

с

 

Fig. 8. The function  хfy   and the tangent line is parallel to x -axis 

 

Cauchy′s theorem. Let functions  хf  and  хg  be continuous on a 

closed interval  ba;  and haves derivatives not vanishing simultaneously on 

an open interval  ba;  and    bfaf  .  

Then on the interval  ba;  there is a point c  for which the following 

equality holds: 
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   
   

 
 cg

cf

agbg

afbf









    bca  . 

 

The corollary of this theorem if   xхg   is Lagrange’s theorem for finite 

increments. 

Lagrange′s theorem. Let the function  хf  be continuous on a closed 

interval  ba;  and have the derivative on an open interval  ba; . Then on 

the interval  ba;  there is a point c  for which the following equality holds: 

 

      abcfafbf      bca  . 

 

This theorem has the following geometrical interpretation, if we rewrite it in 

the form 

 

   
 cf

ab

afbf





  bca  . 

 

The left-hand side of this equality is the slope to x -axis of the chord MN  

joining the points   afaM ;  and   bfbN ;  of the graph of the function 

 хfy  . The right-hand side of the equality is the slope of the tangent to 

the graph at a some interior point with the abscissa  bac ; . By the La-

grange’s theorem it follows that there is the point c  on the curve that the tan-

gent line to the graph of the function at this point is parallel to the chord 

MN  (fig. 9). 

 

14. Evaluation of Indeterminate Forms. L′Hospital′s Rule ′ 

 

We will say that the ratio 
 
 xg

xf
 presents the indeterminate form 









0

0
 as 

ax  if     0limlim 


xgxf
axax

. To evaluate this indeterminate form it 

means to find 
 
 xg

xf

ax
lim  if it exists. 
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y

0 a bс

с T

N

M

х

 

Fig. 9. The graph of the function at the point is parallel to the chord MN  

 

There is the so-called L′Hospital′s rule for evaluating these indetermi-

nate forms which is concluded in the following theorem. 

Theorem. Let functions  хf  and  хg  be continuous and have first 

derivatives in the neighborhood of a point a  except possibly the point a  itself. 

If the functions  хg  and  хg  are not equal to zero in the indicated neigh-

borhood,     0limlim 


xgxf
axax

 and the limit 
 
 xg

xf

ax 




lim  exists, then an 

equal limit  
 
 xg

xf

ax
lim  also exists. 

For indeterminate forms of the type 











 there is the second L′Hos-

pital′s rule which states that if     


xgxf
axax

limlim , then 

 
 

 
 xg

xf

xg

xf

axax 





limlim  when the latter exists.  

We have presented this theorem without proof but we note that they 

can be proved with the aid of the mean-value theorem.  

Remark 1. If the expression 
 
 xg

xf




 is the indeterminate form of the type  
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







0

0
 or 












 and functions  хf  and  хg  satisfy to the conditions of 

the L’Hospital’s rules, then  

 

 
 

 
 

 
 xg

xf

xg

xf

xg

xf

axaxax 










limlimlim . 

 

It should be stressed that if the third limit exists, then the second and the first 

limits also exist. 

Remark 2. The indeterminate forms  0 ,   ,  1  and  00  are 

reduced to the indeterminate forms 








0

0
 and 












 by means of algebraic 

transformations. 

Let us consider examples.  

Example 1. Evaluate 
x

x

x 4sin

3sin
lim

0
. 

Solution. Here we have the indeterminate form 








0

0
. Using L′Hospital′s 

rule we obtain  

 

 

  4

3

4cos4

3cos3
lim

4sin

3sin
lim

0

0

4sin

3sin
lim

000
















 x

x

x

x

x

x

xxx
. 

 

Example 2. Find 
 ax

aх

ax 



 sin
lim

22

. 

Solution. Here we have the indeterminate form 








0

0
. Using L’Hospital’s 

rule we obtain  

 

 
 
    

а
a

ax

х

ax

aх

ax

aх

axaxax
2

1

2

cos

2
lim

sin
lim

0

0

sin
lim

2222



























. 
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This result is obtained analogously to the previous example.  

Example 3. Find   x

x

x
cos2

2

cos1lim 



. 

Solution. In this case we have the indeterminate form  1 . To evaluate 

it we can use the substitution xy 
2


 then 0y  as 

2


x . And we re-

write this limit in terms of a new variable 

 

    2sin2

0

cos2

2

sin1limcos1lim eyx
y

y

x

x







,  

 

since 
 

     kхk

х
eх 






1lim

0
. 

 

15. Increase and Decrease of a Function. Necessary and  

Sufficient Conditions for an Extrimum of the Function 

 

Let us apply the notion of the derivative to studying the behavior of a 

function. Consider the value of a function of one variable  хfy   in some 

interval  ba;  and in some  -neighborhood of a fixed point 0x . Let us denote, 

as before   

   00 xfxxfy  . 

 

Definition 1. A function is called increasing (decreasing) in an interval 

 ba;  if for any 1x  and 2x  within this interval    21 xfxf   (    21 xfxf  ) 

when 21 xx   (Fig. 10, 11).  

Definition 2. We will say that the function  хfy   increases (de-

creases) at a point 0x  if there is 0  such that 0




x

y
 













0

x

y
 for 

 x0 , that is, the quantities y  and x  have like (unlike) signs (Fig. 12, 

13).  
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y

а х0

 xfy 

1х b2х

 1хf

 2хf

 

Fig. 10. A function is increasing in an interval  ba;  

 

y

a х
0

 xfy 

b1х 2х

 1xf

 2xf

 

Fig. 11. A function is decreasing in an interval  ba;  

 

Basing on the latest definition we can give another definition for local 

extremum of a function. 

Definition 3. The function  хfy   reaches a local maximum (mini-

mum) of the point 0x  if there is 0  such that 0y   0y  for 0x  

(Fig. 12, 13). 
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y



xх 0

х0  0x

 xfy 

xх 0

 0x0х

 

Fig. 12. The function  хfy   increases at a point 0x  

 

y



xх 0

х0  0x

 xfy 

xх 0

 0x0х

 

Fig. 13. The function  хfy   decreases at a point 0x  

 

Let us consider simple tests for an increase and decrease of a function 

and also tests for a local extremum.  

Conditions for increasing (decreasing) of a function are concluded in 

the following theorem. 

Theorem 1. If function  хfy   has a positive (negative) derivative at 

a point 0x , then it increases (decreases) at this point. 
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y

 xх 0
х0

 xfy 

xх 0 0х

 

Fig. 14. The function  хfy   reaches a local maximum of the point 0x  

 

y

 xх 0
х0

 xfy 

xх 0
0х

 

Fig. 15. The function  хfy   reaches a local minimum of the point 0x  

 

Let   00  хf , then   0lim 0
0







xf

x

y

x
 and therefore, the quantity 

x

y




 has the same sign as  хf   in some  -neighborhood of the point 0x . In 

this  -neighborhood  0




x

y
, that  is, the  function  хfy   increases at the  
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point 0x . The case   00  хf  is considered in a similar way.   

Now we can establish a necessary condition (test) for an extremum.  

A necessary Condition for an Extremum. If a function has an extre-

mum at a point 0x , its derivative at that point is either equal to zero or does 

not exist. 

Indeed, if the function attains a maximum at the point 0x  its value at 

this point is the greatest in the neighborhood of this point 0x . It follows from 

the previous theorem and from Fermat’s theorem. The argument is complete-

ly similar in the case of a minimum.  

Geometrically, this means that the tangent to the graph of a function is 

parallel to x -axis at its "tops" and "cavities" (see Fig. 6 Sec. 12).  

A function can also have an extremum at some of the points where it is 

non-differentiable. Examples of that kind have been demonstrated in Fig. 4 

and Fig. 5 (Sec. 4). 

Definition 4. The points at which the derivative of the function is equal 

to zero or does not exist are called critical points. 

It should be noted that the necessary condition for an extremum is not 

sufficient: the fact that the derivative at a given point turns into zero (or does 

not exist) does not necessarily imply that this point is a point of an extremum.  

For example, the derivative of the function 
3xy   is 

23xy  ; it vanishes at 

the point 0x  but this point is not a point of an extremum of the function 

(Fig. 16).  

To find out whether a given point where the derivative turns into zero or 

does exist is a point of extremum we should resort to sufficient conditions 

(tests) for an extremum to which we proceed now.  

The First Condition for an Extremum in Terms of the First Deriva-

tive is based on the following theorem. 

Theorem 2. Let the function  хf  be continuous in some neighborhood 

of a point 0x  and has in this neighborhood a derivative satisfying the follow-

ing conditions:   00  хf  (   00  хf ) for 0xx   and   00  хf  

(   00  хf ) for 0xx  . Then the function  хf  has a local minimum (maxi-

mum) at the point 0x .  
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x

y

3хy 

0

 

Fig. 16. The graph of the function 
3xy   

 

By Lagrange′s formula for finite increments, in the considered neighbor-

hood of the point 0x  we have:  

 

      00 хxcfхfхf  ,  0;хxc . 

 

Therefore, by virtue of the conditions of this theorem both for 0xx   and 

0xx   we have:    00  хxcf  (    00  хxcf ), that is    0хfхf   

(    0хfхf  ). Consequently, the function  хf  has a local minimum (max-

imum) at the point 0x . 

Thus briefly: if, as x  passes through the point 0x  (from left to right), 

the derivative changes its sign at the point 0x  is a point of extremum.  

If the derivative changes the sign from + to –, there is a maximum at the 

point 0x , if conversely this is a minimum. 
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The conditions of this theorem can be simplified if the existence of the 

second derivative is assumed. 

The Second Sufficient Condition for an Extremum in Terms of the 

Second Derivative is concluded in the theorem.  

Theorem 3. Let the function  хf  have a derivative  хf   in 

the neighborhood of the point 0x  and a second derivative  хf   at the point 

0x  itself. If   00  хf  and   00  хf  (   00  хf ), then the point 0x  is a 

point of a local minimum (maximum) of the function  хf . 

Since the derivative  хf   exists in the neighborhood of the point 0x , 

the function  хf  is continuous in this neighborhood.  

Let us show that the conditions of Theorem 2 are completely fulfilled. 

Since   00  хf  (   00  хf ), the function  хf   increases (decreases) at 

the point 0x . In addition,   00  хf  and, therefore, in some neighborhood of 

the point 0x , we have:   0 хf  (   0 хf ) for 0xx   and   0 хf  

(   0 хf ) for 0xx  . Thus, it follows from Theorem 2 that for 0xx   the 

function  хf  has a local minimum (maximum) at the point 0x .  

Remark. If   00  хf  and   00  хf , then the problem remains un-

solved and it is necessary to resort to the First Condition. 

Let us consider several examples. 

Example 1. Find intervals of increasing and decreasing of the function 

  xxхfy sin2 ,  2;0x . 

Solution. Let us find the derivative xy cos21 . It is evident that 

0y  in the interval 








3

5
;

3


 and 0y  in the interval 









3
;0


 and 












2;

3

5
. Thus this function increases in the interval 









3

5
;

3


 and de-

creases in the intervals 








3
;0


 and 








3

5
;

3


. 

Example 2. Find the point of a local extreme of the function 

  xexхfy    and 0,0,0  x . 
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Solution. Since  xexy x   1
, we have 0y  for 




x , 

0y  for 



x , 0y  for 




x . Therefore, the point 




x  is a point of 

maximum for the function 
xexy    

Example 3. Find the extremum of the function 
21y х х .    

Solution. This function is defined as [-1;1]x .  Let us find the deriva-

tive 
2

2

1

21

х

x
y




 . 

If 0y  then 021 2  x , whence 
2

1
1 x , 

2

1
2 x  (critical points); 

y  as 1x . These points are bound points of the domain of the defini-

tion of the function. 

Let us find the second derivative 
 
  2

3
2

2

1

32

x

xx
y




 . Now we compute the 

values of the second derivative at the critical points. When 
2

1
1 x , we 

have  

 

04

2

1
1

3
2

1
2

2

1

2

1

2
3

2

2



































































y , 

 

hence in accordance with Theorem 3 we conclude that the function has 

a minimum 
2

1

2

1
min 








 yy  at the point 

2

1
1 x . 

When 
2

1
2 x , we have  
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04

2

1
1

3
2

1
2

2

1

2

1

2
3

2

2

























































y , 

 

i.e. the function has a maximum 
2

1

2

1
max 








 yy  at the point 

2

1
2 x . 

There is no extremum at the critical points 1x  since the points of 

the extremum can be found only at interior points of the domain of the defini-

tion of the function. 

Example 4. Prove that 
333222 cbacba   if 0,0,0  cba , 

1abc .  

Solution. Let us  

 

  xxx cbaxf  ,   ccbbaaxf xxx lnlnln  , 

 

for which we can tell only that  

 

  01lnlnlnlnlnlnlnln0 000  abccbaccbbaaf . 

 

However, the second derivative is   ccbbaaxf xxx 222 lnlnln  , 

which is clearly positive. We thus deduce that  хf   is increasing, and so 

    00  fхf , for 0х , therefore  хf  itself is increasing for 0х , and 

the conclusion follows:     33322232 cbacbaff  .  

Example 5. Determine the most economical dimensions of a closed cy-

lindrical cistern of the given volume V  with the least total surface. 

Solution. Denoting the radius and the altitude of the cistern in terms of 

R  and H  and its total surface as S , we obtain 

 

222 RRHS   . 
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Here R  and H  are not independent variables but they are connected with 

the relationship  

 

HRV 2  

 

since according to the condition this cistern should have the given volume. 

We determine the altitude H  by this relationship 

 

2R

V
H


 . 

 

Substituting H  into the expression of total surface we get  

 

2 2

2
2 2 2 0

V V
S R R R , R .

R R

 
          

  
where  

 

Thus writing down  RSS   we find its least value as  R0  

 

3
2 2

2 2 0 2
2

V V V
S ( R ) R , R R

R R

 
         

 
or and  

 

3
32

4

2






V

V

V
H 









 . 

 

This radius R  is found in the considered interval 

 

  









3

2
22

R

V
RS   and 012

2
3 








 



V
S . 

 

Whence it follows that 3

2

V
R   is the point of minimum. The function  
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 RSS   is continuous   ;0R  therefore the single minimum coin-

cides with its least value in this interval. So 3

2

V
R   and 3

4



V
H   are the 

most economical dimensions of the cistern. 

 

16. Finding Greatest and Least Values of the Function 

 

Let the function  хfy   be continuous on a closed interval  ba; . In 

order to determine the greatest value and the least value of the function the 

values of the function at the points of extremum should be compared with 

each other and with the end-point values. For the greatest (the least) value of 

the function on the interval  ba;  is either one of its maximum (minimum) val-

ues or an end-point value.  

Example 1. Determine the greatest and the least values of the function  

 

3 23 9 35 [ 4 4]y x х х , x ; .       

 

Solution. First of all let us find the critical points or the points at which 

the first derivative is equal to zero: 

 

2

1 2 1 23 6 9 0 1 3 [ 4 4] [ 4 4];y x х х ; x , x ; x ;            and  

 

    4011  yxy ,     832  yxy . 

 

Now we compute the values of the function at the edges of the segment 

  414 y ,   154 y .  

Comparing all the values of the function at the interior critical points and 

its values at the edges we can draw the following conclusion. 

The greatest value of the function in the interval  4;4  is equal to 40 

and it attains at the interior point 1x . 

The least value is equal to 41  and it reaches at the left-hand edge of 

the segment  4;4  that is the point 4x . 

The approximate graph of this function is represented in Fig. 17. 
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Fig. 17. The approximate graph of the function  хy  

 

17. The Direction of Convexity and the Point of Inflection of  

a Curve 

 

We begin with the following definition. 

Definition 1. A curve  хfy   is said to be convex upward (down-

ward) at a point 0x  if there is a neighborhood of the point 0x  such that for all 

of the points the curve  хfy   is situated below (above) the tangent to the 

curve at the point 0x . 

For instance in Fig. 18 the curve  хfy   is "bulging downward" at the 

point 1х  and is "bulging upward" at the point 2х . 

Definition 2. A point 0x  is said to be a point of inflection of a curve 

 хfy   if, when x   passes  through the value 0x   the moving point  of the  
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curve passes from one side of the tangent at the point 0x  to the other side. 

 

y

0 1x 2x 3x x

 

Fig. 18. The curve  хfy   is "bulging downward" at the point 1х   

and is "bulging upward" at the point 2х  

 

In other words a point of a curve separating its convex arc from a con-

cave arc is termed a point of inflection. For instance, in Fig. 18, the point 3х  is 

a point of inflection of the curve  хfy  . At the point of inflection the tan-

gent intersects the curve, in the vicinity of such a point the curve lies on both 

sides of its tangent drawn through that point. 

Let us indicate basic test defining point of convexity upward (downward) 

and point of deflection. 

Theorem 1. If the second derivative  хf   is everywhere negative 

(positive) within an interval, the arc of the curve  хfy   corresponding to 

that interval is convex upward (downward or it is concave). 

We present this theorem without proof but we note that it is contained in 

many textbooks in higher mathematics. From the above argument and Theo-

rem 1 the necessary and sufficient tests (conditions) for a point of inflection 

follow. 

The necessary condition for a point of inflection: at this point 

  00  хfy  or does not exist.  
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It should be noted that by for not every root of the equation   0 хf  is 

the abscissa of a point of inflection. For example, the first and the second de-

rivatives of the function 
4xy   are 

34xy   and 
212xy  . Although 

  00  хy  → 00 x  the point  0;0  is be the vertex of the parabola 
4xy   

and does not serve as its point of inflection. 

In order to find out the point of inflection there is a sufficient test which 

is contained in the following statement. 

If the second derivative  хf   changes sign as x passes through 0x  

(from left to right), then 0x  is the abscissa of the point of inflection. If it 

changes sign from – to +, there is an interval of convexity upward on the left 

of the point 0x  and an interval of concavity on the right of it (convexity down-

ward), and, conversely, if it changes sign from + to –, an interval of convexity 

downwards follows an interval of convexity upward as x passed through 0x .   

Example 1. Investigate the direction of convexity and find the points of 

inflection 
x

arctgy
1

 . 

Solution. Let us find the first derivative 

 

0
1

11

1
1

1
22

2

















xx

x

y . 

 

It is a negative value for   ;x . Then the function decreases 

along the whole numerical axis. 

The second derivative   

 

2

2

1
1

2













x

х
y ;  0y  as 0х . 

 

It is evident that for 0x  0y , then the graph of the function is con-

vex upward (sign "∩") and   ;0x  the graph of the function is convex 
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downward (sign "U"). Consequently, according to the sufficient test 00 x  is 

the abscissa of the point of inflection. And the interval  0;x  is the in-

terval of convexity while the interval   ;0x  is the interval of concavity. 

  

18. Asymptotes of Curves 

 

Sometimes, the notion of asymptotes is useful when the graph of a 

function  xfy   is investigated. 

Definition 1. A straight line bkxy   is called an asymptote to a 

curve  xfy   as х  ( х ) if      

 

     0lim 


bkxxf
x

. 

 

This is the definition of the inclined asymptote. 

Let us give the necessary and sufficient conditions for an asymptote to 

exist. Let there exist an asymptote bkxy   to a curve  xfy   as 

х . Then    

 

( ) ( ) ( )
0

x x

f x kx b f x
lim , k lim .

х х 

 
 whence  

 

Given k , we can find b  from the equality   kxxfb
x




lim . The converse 

is also true: if the limits k  and b  exist, then a straight line bkxy   is an 

asymptote to the curve  xfy   as х . The condition for an asymptote 

to exist as х  is formulated and proved in a similar manner.  

In the case, when 0k  and the equation of an asymptote is by  , 

then we have a so-called horizontal asymptote. If  

 

  


xf
ax 0

lim  (or  ) or   


xf
ax 0

lim  (or  ), 

 

the curve  xfy   is sometimes said to have a vertical asymptote for ax  .  
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Example 1. Are there asymptotes for the curve of the function   

 

  xxxfy arctan ? 

 

Solution. The equation of asymptotes bkxy  , and   

 

 
x

xf
k

x 
 lim ,     kxxfb

x



lim . 

 

For this function  

 

 
2

arctanlim
arctan

limlim





x
x

xx

x

xf
k

xxx
. 

 

Then 

 

   0
2

arctanlim
2

arctanlimlim 





























xx

x
xxkxxfb

xxx
. 

Thus, the curve of the function   xxxf arctan  has asymptotes 

xy
2


  and xy

2


 .  

 

19. A General Scheme for the Investigation of the Graph of  

a Function 

 

Above we have considered the methods for a qualitative investigation of 

functions and their graphs. Now we may recommended the following scheme 

for investigation of graphs: 

1) find the domain of the definition and the range of values of a given 

function (if possible); 

2) find the points at which the graph intercepts the axes of coordinates; 

3) determine the character of symmetry of the graph, that is whether the 

function is even or odd (or neither); 

4) determine the periodicity of the graph; 
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5) find the points of discontinuity, clarify their character and find vertical 

asymptotes; 

6) by the sign of the first derivative, find the intervals of increase and 

decrease of the function and its points of extremum; 

7) by the sign of the second derivative, classify the points of extremum, 

find the intervals of convexity and concavity and the possible positions of in-

flection points; 

8) determine the behavior of the function at infinity and its inclined ( and, 

in particular, horizontal) asymptotes and draw an approximate graph of the 

function. 

If the computation of some derivatives and the determination of their 

sings involve many difficulties, then some of the above items may be omitted 

in the process of investigation.  

Example 1. Investigate the graph of the function: 

 

 
12

3




x

x
xfy . 

 

Solution. 

1) The domain of the definition of the function:  

the intervals ( 1) ( 1 1) (1 )x ; ; ; ,         

the range of values ( )y ; .    

2) 0х ; 0y  is the point of intersection with axes of coordinates. 

3) Since    хfхf  , this function is odd. Then it is sufficient to in-

vestigate the graph of the function for (0 )x ; .    

4) For [0 1)x ;  we have 0y  for (1 )x ;   we have 0y . For 

1х  the function has a vertical asymptote (a point of discontinuity of the 

second kind). 

 


 1

lim
2

3

01 x

x

x
, 

 1
lim

2

3

01 x

x

x
, 

 

1х  is also the equation of the vertical asymptote since the function is odd. 
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5) 

2 2 3 4 2 4 4 2 2 2

2 2 2 2 2 2 2 2

3 ( 1) 2 3 -3 2 -3 ( 3)

( 1) ( 1) ( 1) ( 1)

x х х х x х х x х x х
y .

x x x x

   
    

   
 

 

For 01 х , 32 х  and 33 х , 0y . For (0 3)x ;  we have 

0y  that is the function decreases, for ( 3;+ ),x   0y  the function 

increases.  

Therefore, 33 х  is a point of minimum 
3 3

( 3) 2 55
2

miny , .   

For  0;3х , 0y  and we can see that passing through the point 

01 х  does not change the sign, therefore there is no extremum at the point 

01 х .  

Since the function is odd the point 32 х  is the point of maximum 

and 
3 3

(- 3) 2 55
2

maxy , .     

 

6) 

4 2 2

2 2 2 3

- 3 2 ( 3)

( 1) ( 1)

x х x х
y .

x x

  
   

  
  

 

For 0х , 0y  and for 1х  and 1х  does not exist. Therefore, 

01 х , 14 х , 15 х  are the points of possible inflection.  

Passing through the point 01 х  in the interval  1;1х  y   changes 

the sign from "+" to "-" that is the function is convex downward in the interval 

(-1;0]x  and the curve of the function is convex upward for  1;0x . The 

point 01 х  is the point of inflection.  

For 1х , 0y  and the function is concave that is the point 15 х  is 

also the point of inflection. Analogously 14 х  is the point of inflection be-

cause the function is odd. 
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7) Since 
 

 
1

1
1

1
lim

1
lim

1
limlim

2

2

2

2

3














x

x

x

xx

x

x

xf
k

xxxx
  

and 

 

   0
1

1

1

lim
1

lim1
1

limlim

2

22

3





























x

x

x

x

x

x
kxxfb

xxxx
 

 

for x  the function has the asymptote xy  .  

 

y

1 0 x1
33

 

Fig. 19. The graph of the function  
12

3




x

x
xfy  

 

It is convenient to place the results of the investigation into the following 

table.   
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                                                                                                          Table 1 

 

х   0  1;0  1  3;1  3   ;3  

y   0 ─ does not exist ─ 0 + 

y    0 ─ does not exist + + + 

y   0 \   ∩ does not exist \   U 55,2min y  /   U 

 

The arrow   in this table indicates the decreasing function and   indi-

cates the increasing function. With the aid of this table we can plot the graph 

of the function (Fig. 19). 
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Individual tasks 

1 – 4. Find the first and the second derivatives of the given functions.  

5. Find the greatest and least values of the function. 

6, 7. Investigate the graph of the function. 

8. Find an equation of a tangent and a normal to a function at a point. 

9, 10. Find limits using L′Hospital′s rule. 

 

Variant 1 

 

1) 1arctan 2  xy ; 2) xxy 4sin 2 ; 

3) 
x

x
y

ln

arcsin
 ; 4) yxey 74  ; 

5)   22ln 2  xxy ,      3;0 ; 6) 
1

223






х

хх
y ; 

7) xхy ln ; 8)  4 хy ,     80 х ; 

9) 







  1ln

lim
2

2

xx e

x
; 

10)   x

x
x

sin1

0
coslim


. 

 

Variant 2 

 

1) 
x

y
3

cosln ; 2) xy 2sin1 ; 

3) xey x 4tan2arctan ; 4) 








ty

tx

2arccos

2arcsin
; 

5)  
1

3
2 


х

х
y ,      5;0 ; 6) 

42

2



х

х
y ; 

7) 
2

3 2






х

х
y ; 8) хххy 42 23  ,    20 х ; 

9) xх
x

3

0
lnlim


; 10)  

21

0
4coslim

x

x
x


. 
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Variant 3 

 

1) xey
2cos ; 2) 

12

2




x

x
y ; 

3)  1lnarctan 4  xy ; 4)  yxctgxy  ; 

5)  xхey  ,      0;2 ; 6) 53
34

2
34

 х
хх

y ; 

7) 
x

хy
1

 ; 8)  123  xtgy ,     
2

0


х ; 

9) 
xx

ee xx

x cossin
lim

0






; 10) 

xtg

x x

2

0

1
lim 










. 

 

Variant 4 

 

1) xy 2ln1 ; 2) 


xtg
y

2arcsin
 ; 

3) 

12

3




x

e
y

x

; 4) 










ty

tx

3

3

sin2

cos2
; 

5)  
29 x

x
y


 ,      2;2 ; 6) 

1

3




x

х
y ; 

7) 
х

х
y

1

2

2

 ; 8)  4
23

23

 x
xx

y ,  10 х ; 

9) 

x

xex

x sin

cos
lim

2

0




; 10)  x

x
x2sinlim

0
. 
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Variant 5 

 

1) xey x 2arctansin ; 2) 72  xxy ; 

3) 
x

y
lnarcsin

1
 ; 4)  yxtgy 3

; 

5)  
x

x
y

ln
 ,      4;1 ; 6) 

 21

1






х

х
y ; 

7) xeхy  ; 8) 743 2  ххy ,  10 х ; 

9) 
x

x

x 2sinln

7sinln
lim

0
; 10) 

x

x
x 2sin

0
lim


. 

 

Variant 6 

 

1) 
х

х
y

12 
 ; 2) xxy ln4sin 2 ; 

3) xey 4arcsin ; 4) 

 













2

4ln 2

t
arctgy

tx

; 

5)  4108 xxy  ,      4;1 ; 6) 3
2

2
4

 х
х

y ; 

7) 2

x

xey


 ; 
8)  7

4

4


x

y ,     20 х ; 

9) xхctg
x


0

lim


; 10)   x

x
x

ln

1
1lim 


. 
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Variant 7 

 

1) 
3

3sin 2 x
y  ; 2) xey 2cosln ; 

3) 4 4xarctgy  ; 4) 5sin 2  xyy ; 

5)  
11232 23  xxxy ,     

 5.2;2 ; 
6) 

1

5
2

2



х

х
y ; 

7) 
x

х
y

ln
 ; 8) 29 ххy  ,   30 х ; 

9) хctgx
x

arcsinlim
0

; 10)  x
x

xcos1lim
0




. 

 

Variant 8 

 

1) xtgexy 33 ; 2) 1sinln 2  xy ; 

3) 21arcsin xy  ; 4) 
















1

1

1

2

2

t
y

t

t
x

; 

5)  xxy ln2 ,      e;1 ; 6) 
21

2

х

х
y


 ; 

7) 
х

x
y

ln1
 ; 8) 

3542 23  хххy ,   

20 х ; 

9)  ctgxx
x

cos1lim
0




; 10)   xx

x
x

1
2lim 


. 
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Variant 9 

 

1) 
xarctg

y
2

1
 ; 2) xy x 4cos2 ; 

3) xtgey 4ln ; 4) 5 yx ; 

5)  
2

2

3

3

2

4

1 234  xxxy ,     

 4;2 ; 

6) 
1

52






х

хх
y ; 

7) 
33

1

х
хy  ; 8) 123  ххy ,   20 х ; 

9) 
 

xxx ee

x
220

1ln
lim

 


; 10) 

21

0
lim

x

x x

tgx










. 

 

Variant 10 

 

1) 
x

x
y

5ln
 ; 2) xxy 3sin 22 ; 

3) xey arcsin ; 4) 












t
y

xctgx

3sin

1

3

; 

5)  
4

5 8

x

x
y


 ,      1;3  ; 6) 

1

6
2

2






х

х
y ; 

7)  4ln 2  xy ; 8) 852  ххy ,   30 х ; 

9) 
x

xe x

x 3sin

15
lim

2

5

0




; 10)  tgx

x
xsinlim

0
. 
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Theoretical questions 

 

1. An increment of a function.  

2. A derivative of a function. 

3. Velocity of rectilinear motion. 

4. Right-hand and left-hand derivatives. 

5. The notion of a differential.  

6. A linear part of an increment of a function.  

7. A production function and a marginal cost. 

8. A coefficient of elasticity.  

9. The Geometrical meaning of a derivative: a tangent and a normal to a 

function. 

10. A differential function at a point.  

11. A continuous function.  

12. A point of inflection.  

13. A derivative of a sum, a product and a quotient.  

14. A derivative of a composite function.  

15. A derivative of two inverse functions. 

16. A parametric representation of a function. 

17. Derivatives of elementary functions. 

18. A derivative of an implicit function. 

19. Logarithmic differentiation of a function. 

20. Applying a differential to approximate calculations. 

21. A derivative of the second order.  

22. Physical interpretation of the second derivative. 

23. A differential of the second order. 

24. Derivatives and differentials of higher orders. 

25. A local minimum and a local maximum. 

26. Fermat′s, Rolle′s, Cauchy′s and Lagrange’s theorems. 

27. Indeterminate forms. L′Hospital′s rule. 

28. Increasing and decreasing functions. 

29. Necessary and sufficient conditions for an extremum of the function. 

30. Finding the greatest and least values of a function. 

31. Direction of convexity. Necessary and sufficient conditions for a point of 

an inflection of a function. The notion of asymptotes.  

32. Necessary and sufficient conditions for an asymptote to exist. 

33. A general scheme for the investigation of the graph of a function. 
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