MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

Guidelines
to practical tasks in introduction to mathematical analysis
of the academic discipline
“Higher Mathematics”
for foreign and English-learning full-time students

Compiled by le. Misiura

Chief of the department L. Malyarets

Kharkiv, S. Kuznets KhNUE, 2018



3aTBepaKeHO Ha 3acigaHHi kKadeapu BULLOT MaTeEMaTUKM 1 €KOHOMIKO-
MaTeMaTU4HUX MeTOiB.
MpoTtokon Ne 1 Big 27.08.2018 p.

le. Misiura

Guidelines to practical tasks in introduction to mathematical analysis of
the educational discipline “Higher and Applied Mathematics” for foreign and
English-learning full-time students / compiled by le. Misiura. — Kh. : Publishing
House of S. Kuznets KhNUE, 2018. — 61 p. (English)

Methodical recommendations are intended for foreign and English-
learning full-time students for practical classes on topic “Limits” of the disci-
pline "Higher Mathematics". The sufficient theoretical material and typical ex-
amples are presented which give students the possibility to master the material
on topic “Limits” and apply the obtained knowledge in practice. Individual tasks
for self-study work and the list of theoretical questions which promote improving
and extending of students’ knowledge on the theme are given.

Recommended for full-time students of training direction 6.030601
"Management".

MogaHo MeToAMYHI pekoMeHZauil aAna CTy4eHTIB-iHO3eMUuiB Ta CTyOeH-
TiB, WO HaBYalOTbLCA aHrMiNCbLKOK MOBO, AEHHOI (popMM HaBYaHHA OnNS
NPaKTUYHUX 3aHATb 3 TeMU «[ paHuuay» HaBYanbHOI gucuunniHn «Buwa ma-
TemaTtukay. BuknageHo HeobXxigHMin TeEoOpeTUYHMIA MaTepian Ta HaBedeHo Tu-
NoBi NpuKNagun, siki cNpusalTb HanBINbL NOBHOMY 3aCBOEHHIO MaTtepiany 3
Temn «[paHnus» Ta 3aCTOCYBaHHIO OTPUMaHMX 3HaHb Ha npakTtuui. NogaHo
3aBOaHHA ons iHamMBigyanbHOI poboTK Ta nepenik TEOPeTUYHUX NUTaHb, Lo
CAPUSAIOTb YOOCKOHANEHHIO Ta NOrNMOGNeHH0 3HaHb CTYAEHTIB 3 AaHOI TEMM.

PekomeHgoBaHO A51s CTyAEHTIB AEHHOI (OOPMU HaBYaHHS.



Introduction

Nowadays, it is impossible to conduct serious economic investigations
without possessing powerful mathematical apparatus which is in an arsenal of
mathematical analysis. Modern methods of mathematical analysis allow to
solve the most difficult and miscellaneous economic problems, that is why
mathematical analysis is the foundation of mathematical education. It requires
the students to have considerable theoretical knowledge in mathematics
whatever their speciality is, in particular, economic speciality.

The aim of this teaching aid is to present only the most basic, initial
notions of mathematical analysis, such as: set, function, limit, continuity.
These topics are illustrated with many examined examples. Students can
apply the acquired knowledge and skills for solving many practical problems
of economics and business.

These guidelines are intended for students of all specialities and can be
used for studying under the guidance of a lecturer as well as independently.

Guidelines in Limits
1. Set

The notion of a set is one of the most fundamental and initial notions in
mathematics and it cannot be defined in terms of other notions.

Let’s present the definition of it.

Definition. A collection of things gathered according to a certain sign
will be called a set. Objects entering into a set are called the elements of a
set.

Sets are denoted by upper Latin letters A/B,...,X,Y and their

elements by lower letters a,b,...,X,y.
The belonging of the element X to the set X is symbolized in the
following way: X € X . If X does not enter in the set X itis writtenas x g X .

The symbol X <Y means that the set X is included into the set Y . In
this case the set X is called the subset of the set Y and the elements of the
set X are, at the same time, the elements of the set Y , that is, if X € X then

X eY . Symbols — and O are called the signs of including.
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It is advisable to introduce into consideration a set containing not a

single element. Such a set is called empty and it is denoted by the symbol .
The following notation is also used. For instance, the set of real integer

numbers is denoted by the expression N ={1,2,3,...}.

The sets X and Y are equal to each otherif X <Y and Y © X, i.e.
they are being the subsets of themselves. It is writtenas X =Y .

2. Operations on Sets

There are arithmetic operations on sets possessing the properties
analogous to the corresponding properties of the addition and multiplication of
numbers.

Let’s give their definitions.

Definition. The collection of all the elements of the sets X and Y is

the set Z which is called the union (sum) of the sets X and Y . It is written
as:

Z=X+Y or Z=XUY.

For example, the union of all rational and irrational humbers form the
set of real numbers.
The addition of the set to itself does not change the set, i.e.

A+A=AUA=A

Definition. The collection of elements belonging simultaneously to the

sets X and Y is the set Z which is called the intersection of the sets X
and Y . It is denoted as:

Z=XYorZ=XNY.

Let’s note that X N X = X.

The expression X NY = means that for any X belonging to the
set X it follows that X does not belongto Y and for y from Y, y does not

belong to X . Briefly it can be written as
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VXxeX =x¢gY and VyeY = ye X,

The symbol “V” is read as for any or for all and the symbol “=" is read
so: it follows or whence.
These sets are called not intersecting sets.

a) addition; b) intersection; c) difference
Fig. 1. Arithmetic operations on sets

Definition. The difference of the sets X and Y is called the set Z
which is written as:

Z=X orZ=X-Y.

In this case the set Z contains elements of the set X not entering in
the set Y.
Foregoing operations are shown by the strokes part in Fig. 1.

3. Neighborhood of a Point

A necessity of using such a notion as a neighborhood of a point
frequently appears in the mathematical analysis.
Let’s present this notion.
The real axis is a straight line with a point O chosen as the origin,
a positive direction, and a scale unit.
There is a one-to-one correspondence between the set of all real num-
bers R and the set of all points of the real axis, with each real x being repre-

sented by a point on the real axis separated from O by the distance \X\ and

lying to the right of O for X >0, or to the left of O for X <O0.
One often has to deal with the following number sets (sets of real num-
bers or sets on the real axis).



1. Sets of the form (a,b),(—oo,b),(a,+ ) and (—o0,+0) consisting,

respectively, of all Xxe R such that a<x<b, x<b, x>a, and x is arbi-
trary, are called open intervals (sometimes simply intervals).

2. Sets of the form [a, b] consisting of all X e R such that a<x<b are
called closed intervals or segments.

3. Sets of the form (a,b], [a,b), (- o0, b], [a,+ o) consisting of all x such
that a<x<b, a<x<b, x<b, x>a are called half-open intervals.

A neighborhood of a point X € R is defined as any open interval (a, b)
containing X (a <X< b). A neighborhood of the “point” +00,—o0 or o is de-
fined, respectively, as any set of the form (a,+o),(-c,a) or
(—o0,a)U(a,+0) (here a>0).

Let a and b be arbitrary points of a real axis (Fig. 2).

I I I I > X
0 a b

Fig. 2. An arbitrary interval (a,b) containing point C

If a two-dimensional point set is given on a plane with two arbitrary
coordinates (x, y), then we may say about a neighborhood of a point in two-

dimensional space R?.
The number \a—b\ is called the distance between points a and b. An
arbitrary interval (a,b) containing point C is called a neighborhood of point C.

In particular the interval (C—g,c+g), where &£>0 is said to be ¢-
neighborhood of ¢ (Fig. 3).

c—&

Fig. 3. A neighborhood of point C



Let there be given a point (xo,yo) in R%. A set of points (x, y), in
which coordinates satisfy the inequality

2

(x—x())2+(y—y0)2 <& (6>0)

is called an open circle of a radius ¢ with a center at the point (xg, Yo )-

A neighborhood of the point (xo, yo) on a plane is called an open circle

of radius &> 0. If the radius of the circle is £ >0 then &-neighborhood of
this point will be this circle (Fig. 4).

A neighborhood of the three-dimensional point (xo, Yo Zo) will be called
some open sphere of the radius ¢ > 0.
In general case for n-dimensional point (X, Xpg, -+, Xng ) its &-neigh-

borhood will be called an open n-dimensional sphere of the radius & >0.

Fig. 4. A neighborhood of the point (xo, yo)

4. Closed and Bounded Sets

An imagination about a closed set would be more visual if we should
define a boundary point of a set. A boundary point is called the set point, in
which neighborhood contains points belonging to a set as well as not
belonging to it. The point C is the boundary point of the set A (Fig. 5).
Boundary points of a set form its boundary.

Let's give the definition of a closed set.

Definition 5. A closed set is called a set containing all its boundary
points. Such a set can be bounded and unbounded.

Definition 6. Set X ={X} is said to be bounded above (below) if there is

such a number M that for all elements X € X the inequality X<M (x>M)
is fulfilled. The number M s called the upper (lower) bound of the set X .
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Fig. 5. The boundary point ¢ of the set A

If a set is bounded both above and below it is said to be bounded.

Geometrically it means that there is a sphere, if a set is given in
a space, or a circle, if a set is located on a plane of a finite radius R with
a centre at any point of a set which entirely contains in itself all points of
a given set (Fig. 6), otherwise a set is unbounded.

Fig. 6. A circle of afinite radius R with a centre at any point
5. Function

A function is one of the most basic mathematical notions as well.
Let there be given some number sets X and Y and arule f according

to which any number X from the set X (Xe€ X) is associated with some
number y from Y (y eY). Then a function y = f (x) is said to be defined.

The set X of points x for which a function f(x) is defined is called
the domain of definition of the function f (x), while the set Y values of y is

termed the range of the function f (X).

A variable quantity X is called the independent variable, or
the argument while Yy, which usually varies together with the independent
variable, is termed the dependent variable.

For example, let there be given the function y =sinx. Its domain of
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definition is the whole numerical axis X =(—oo;+oo) and its range is the
segment Y =[-1;1].

The domain of definition of the function and its range may be also
denoted by symbols D and E, respectively.
We may also consider a function of many or n-variables

y=(X,Xp,....,X,) when a number y=(X,X,,...,X,) corresponds to
a collection of real numbers X;,X,,...,X,. The collection of numbers
X =(X,Xp,..., X, ) may be conveniently regarded as a point of an n- di-
mensional space (briefly written as y = f(x), where X=(X,Xp,...,X,)).
Other notations are often used: z = f(x, y) for a function of two variables

and u = f(x,y,z) for a function of three variables.

There are also another names of a function, it is just mapping,
transformation and others. The most general used from them is mapping.

6. Methods of Representing Functions

Usually there are considered three methods of representing functions,
namely: analytical, tabular and graphic methods.
Analytical method. In this case a formula is indicated by means of

which it is possible to compute f (X) for any X e X . For instance, Yy = 6X3,

X is the infinite interval —oo < X < 400.

Tabular method. When specifying a function by means of a table, we
simply write down a sequence of values of the independent variable and in
the values of the function corresponding to them we also indicate the method
of computing Yy for intermediate values of X, using the values given in table.

Let’s consider the table.

3

It is evident that here the function y =X is given. We can see that

the function analytically given can be represented in a table form. It means such
functions may be tabulated.

Usually only analytically complicate functions frequently meeting in
practice may be tabulated. This way of representing functions is widely used,
for instance, everybody is undoubtedly familiar with tables of logarithms,
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tables of trigonometric functions and their logarithms, etc.

Table
Table of values of the independent and dependent variables

X -3 -2 -1 0 1 2 3

y -27 -8 -1 0 1 8 27

However there is no visual demonstration in a tabular and an analytical
methods. But a graphic method has not this lack. A graphic method allows
the accordance between the argument X and the function Yy to state with the
aid of a graph.

Graphic method. We begin with the following definition.

Definition 7. The graph of a function (in rectangular Cartesian
coordinates) is the locus of all points in which abscissas are values of the
independent variable and ordinates are the corresponding values of the
function.

In other words, if we take the abscissa equal to the value of the
independent variable and the ordinate of the corresponding point of the graph
Is equal to the value of the function corresponding to that the value of the
independent variable (Fig. 7). When plotting a graph we can take similar or
different scales along the coordinate axes.

YA

= f(x)
y /

Fig. 7. The graph of a function y = f (X)
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Usually the graph of a function is a curve.
For plotting the graph of the analytically given function y = f (X) first of
all it is necessary to compile the table of the values X and y and then to

construct the system of points on a plane considering X as an abscissa and
y as an ordinate. Joining these points with a line we obtain an approximate

graphic picture of the function.
So in Fig. 8 the graph of the function y = X2 is plotted in which values
at some points are represented in table.

y A

<V

Fig. 8. The graph of the function y = x>

Expanding our information of analytically represented functions we
introduce the additional notions such as: composite, implicit and inverse

functions.
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7. Composite Function

Let a function u=g(X) of the argument X be defined on a set D

being the range of that function u.
Furthermore, let another function y = f(u) be defined on the set G.

Then to each value X belonging to the set D there corresponds a definite
value of U belonging to the set G, and to U, in its turn there corresponds
a definite value of y. Therefore, ultimately, to each of X from the set D there

corresponds a definite value of y and hence Y is a function of X. Denoting

this new function by y:F(X) we can write down the expression of

the function F(x) in terms of the functions f and ¢:

It is said that F (X) as a function of X is a composite function (“a function
of a function”) formed of the function f and ¢. The function u=g(x)

entering the expression f ((o(x)) is referred to as the intermediate variable.

8. Implicit Function

Up to now we have confined ourselves to those functions specified
analytically for which the left term of the equality defining the function is the
variable y alone while the right term is an expression only involving X. We

will call such functions explicit.

But a more general equation connecting two variables and not resolved
in one of them can also specify one variable as a function of the others. For
example, the equation of the circle

represents not one but two functions y=+/1— x? and y=—1- x2 each of
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which is defined on the interval [-1;1]. This equation defines y as a multiple-

valued (two-valued) function of X.
In this approach we can say that an implicit function y (which can be

multiple-valued) of an independent variable X is a function in which values
are found from an equation connecting X and Yy not solved in y.

If we take the equation
y= 1sin y+X
2 )

which also determines y as a function of X we see that it cannot be solved
algebraically, and y cannot be expressed explicitly in terms of X. Equations

of this type can be solved numerically.
At last we remark that general notation of the implicit function

connecting two variables X and Yy has a form F(x, y) =0.

9. Inverse Function

One of the methods of implicit representation of a function is
representing the function y = f () by means of the relationship x =¢(y).

Let for all y from the domain of definition of the function ¢(y) the
following condition be met: if y; #y, then X # X, where ¥ =¢(y;) and
Xo :q)(yz). Then we can assign a definite value of y to every value of X,
using the relationship x =¢(y), that is, the relationship x =¢(y) specifies
some function y = f ().

In this case, the function f(x) is called the inverse of the function
go(y). For example, the function y = x" has the inverse function X:\/y,

where X>0 and n is a natural number (n>1). Then for this function

replacing X upon Yy we obtain the function y:(‘/;. The graphs of the

functions y=X" and y = Q/; are represented in Fig. 9.
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Here we must remark that graphs of mutually inverse functions are
symmetric about the straight line y = X.

10. Classification of one Argument Functions

A function of the form

Po(X)=agX™ +ax™ ™ +...+ap,

where m>0 is an integer and coefficients dp,8y,...,8y are constants

(ao #* O), is called entire rational function or polynomial of the mt" -degree.

Fig. 9. The graphs of the functions y = X", yzi'/; and y=X

A function represented as a quotient of two polynomials

n n-1
R(X)= P, (x) _ X +ax' T +...tay

Qn(X)  box™+bx™t +...+b,

is also a rational function.
The domain of definition of a rational function is the whole axis of
abscissas with the exception of the points (the roots of the denominator) in
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which the denominator of the fraction vanishes.

A wide class of functions is obtained if, besides the arithmetical
operations, the extraction of roots is allowed.

For instance, the function

where R(X) is a rational function is called the irrational function.

The function of the form

3 \/5x2 +1+§/2x2 +3
x* +1

F(x)

can serve the example of the irrational function.
The collection of entire rational, rational and irrational functions form the
class of explicit algebraic functions.

In general case an algebraic function is a function y = y(x) specified

by an algebraic equation
R (X)y" + R (X)y" ™ +...+ Py (x)=0

where P; (x) (j=0.,1,...,n) are polynomials and Ry(x)=0.

Every function belonging not to the class of algebraic function is called
a transcendental function.

All logarithmic, trigonometric and inverse trigonometric functions belong
to the class of elementary transcendental functions. For example, such

functions as a*, log, X,cos x,arctgx are transcendental functions.

Algebraic, elementary transcendental functions and their finite
combinations are called elementary functions.

11. Sequence. Limit of the Sequence

Let's define the sequence.
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Definition 8. Let every positive n(n=12,...) by some rule f be

associated with some real number X, = f (n) then it is said the sequence to
be defined.
Briefly it can be written {X,}={X,X,,...}. Separate numbers X, of the

sequence {X, } are called its elements.
Elements of arithmetic and geometric progressions where every next
element a, can be represented in term of a preceding element a,_; by

means of recurrent relationships can serve well-known examples of a
sequence.

So for arithmetic progression these relationships have the form:
a,=a,¢1+d, n=12,...

where a number d is a difference and for geometric progression
a,=a,41-q, n=12,...

where a number ( is called denominator.
Now we define the limit of the sequence.
Definition 9. A number a is called the limit of sequence {x, } if for any

£>0 there can be found a number n>N(g) such that the inequality

|Xn — a| < ¢ holds for all n> N (g) Briefly it can be written

limx =a.

nN—o0

I.e. the sequence has a limit a.
Let’s consider the examples which would illustrate the foregoing words.

: : : 3. 3n+5
Example 1. Itis required to show that lim x, == if X, = .

n—oo m

Solution. Let's attempt for any & >0 to find such a natural N (&) that

for any n > N_ the inequality
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3n+5_§
n /

<o

would be fulfiled. Reducing the expression of module to a common
denominator we get

n

7
whence n > —.
5¢

Let’s take
5
N —| =
(€)==

5
where by square brackets the entire part of — is denoted then it

le
- 5 . .
follows by definition 9 for n > {7—} the inequality
&
3n+5 3
——l<¢&
m 7
is fulfilled, i.e.
. 3n+5 3
lim =_.

n—wo [N 7

e e o3
xample 2. Prove that the limit lim 3¥" =c0.
N—00

Solution. For a number M >0 taking a logarithm of the inequality

3
3ﬁ > M we obtain

3n>log,M

20



where from n>(log,M )’.

Then if 0<M <N, where N is any natural number we may choose
M >1. Thus, it is necessary to take N =(log,M )°.

Consequently, for n>N =[(log,M )’] the conditon 3" <M\ s

. 3
fulfilled. Since M > 0 is an arbitrary number, then lim 3ﬁ =0,
nN—oo

12. Limit of a Function

Passing to one of the most important topics of mathematical analysis
which differential equations are preliminary it is necessary to meet with the
notion of a function limit and to master a technique of evaluating limit of
function.

Definition 10. A number A is said to be the limit of the function
y=f(x) as x —>a if f(x) being defined in any neighborhood U of this
point a, excluding may be this point and for any & >0 there is a number
5 >0 dependent on & (5 =5(g)) such that for all x satisfying the condition

0<|x—a| <& the inequality |f(x)— A < ¢ is fulfilled.
Usually this assertion is written in the following way:

lim f(x)=A.
X—a

Now we give the definition of the function limit as X tends to infinity.
Let's suppose that the function f(X) is defined on the whole numerical

axis or for all X module of which is greater than some positive number M .
Definition 11. A number A is said to be the limit of the function

y= f(X) as X — +oo if for all sufficiently large values of X the corresponding
values of the function f(X) become arbitrary close to the number A. If Ais

the limit of the function f(x) as X — +o we write as

im f(x)=A.
X—>+00
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In a similar way we can determine the limit of the function as X — —oo.
Let’s consider the example.
3x-5

Example 3. It is required to prove that lim =3.
X—>+00 x

: 3X—5 .
Solution. Here f(x)= . Let ¢ be 0,01 and we consider any
X

difference

3x-5
X

£ (x) 3=

_%:k_

5 5
Thus, 7, <’C':|31>- Since X —>+oo then we can consider X as a
>4 =

positive value. Therefore, we can write down that X > g

Whence we see that sufficiently large number M is equal to

A=
=L

x5S
So if Xx>500 then —X It means that

lim3X=°_3

X—>+00 X

The notion of one-sided limits are also useful for studying functions of
one variable. But preliminarily we introduce the notion of right (left)-hand side
neighborhood of the point a (a is a number).

Definition 12. Any interval U ;= (@—3; &) in which right side edge is a

point a is called a left-hand side neighborhood U 5 Of the point a.

The notation X — a—0 means that X assumes (appropriates) all values
belonging to some neighborhood of the point a, i.e. X —a remaining all the

time less than a(Xx<a). Analogously the notaton X—a+0(X>a) is

defined.
And now we define the right (left)-hand side limit of the function f(x).
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Definition 13. The number A is said to be the right (left)-hand side limit
of the function f(x) as x —>a if for any & >0 there is a number § >0 such

that |f (X)—Al<e for all Xég(xé—l] that is satisfying the inequality

& ——— = 2= ——— S

We must remark that the function f(x) has a limit at the point a if and
only if

im f(x)= lm f(x)=A.
x—a—0 x—a+0

13. Infinitesimals and Infinitely Large Functions or Magnitudes

An important element of limit theory is the notion of the limit of an
infinitesimal and an infinity large function or magnitude.
We give their definitions.

Definition 14. A function a(x) tending to zero as x —a is called an

infinitesimal, as x — a. According to what was indicated this means that, if
there is given any &>0 (however small), there is 6 >0 such that the

conditons X#a and \X—d<5 imply the inequality |a(X<e&. It is
equivalent to the notation

lim a(x)=0,

X—a

that is the limit of an infinitesimal.
Analogously, an infinitesimal is defined as X —>0—-0 and Xx—>0+0 as
well as X — —o0 or X — 40,

If lim f(x)=A it means definition of the function limit that the
X—>+00

difference
f(x)—A=a(x) or f(x)=A+a(x),

where a(x)—0,as x > a.
Definition 15. A function y = f(x) is said to be an infinitely large
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magnitude (or is said to become infinite or to approach infinity) as X —a if
for all the values x lying sufficiently close to a the module of the

corresponding values of the function f(X) become greater than any given
arbitrary large positive number.
If the function f (x) approaches infinity as X — a we write

im  (X)=-oo.
X—>+00

_ : 1
It is important to remark that if f(X)—)oo as X —a then T) —0, as
X
. 1
X —a and if a(x)—>0, as x—>a (a(x)=0 for x=a), then T)—>oo as
o\ X
X —a. It means that an infinitesimal and an infinitely large magnitude are
mutually inverse functions.

14. Basic Theorems about Infinitesimals

In order to evaluate limits it is necessary to know basic theorems
concerning infinitesimals. These theorems are formulated in the following
way:

1. An algebraic sum of two, three and, generally, of a finite number of in-
finitesimals is again an infinitesimal. It means, if a(x), ﬂ(x), y(x) are infinites-
imals as X — a, then

lim (a(x)+ B(x)—y(x))=0.

X—a

2. A product of a constant number as well as a bounded function by an
infinitesimals as X — a is an infinitesimal. It means if f(x)z C and a(x) are

infinitesimals as X —a, then lim Ca(x)=0 and if [f(x)<M (f(x) is a
X—a

bounded function, where a number M >0) as xeU_, where U, is some

neighborhood of the point a and a(x)— 0 as X — a, then
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)!iina f(x)-a(x)=0.

3. A product of finite infinitesimals as X — a is an infinitesimal. It is writ-
ten down

lim a(x)- B(x)=0.

X—a

where a(x), B(x) are infinitesimals as X — a.
And now we write the corollary following from this theorem.

Corollary. If n is a positive integer power of the infinitesimal (a(x))n,

as X —a, then lim (a(x))" =0, where a(x)—>0 as x —>a.
X—a

Regarding the limit of the quotient of infinitesimals we remark this limit

: : : 0 . "
IS a so-called indeterminate form {6} and requires an additional

transformation or a special technique. We will speak about such limits later.
15. Comparison of Infinitesimals

There are following definitions for comparison of two infinitesimals.
Definition 16. Two infinitesimals are said to be one and the same order
if the limit of their quotient is equal to a finite non-zero number as X — a, i.e.

im @= #
a0

. X
Definition 17. If lim @:O, then a(x) is termed an infinitesimal
x—a f(X)

quantity of higher order relative to ,B(X), and ,[)’(X) is a quantity of lower order
with respect to a(x).

. X
Definition 18. If lim @ =k (finite and not equal to zero), then a(x)
x—a ,B(X)
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is called an infinitesimal of the N order with respect to ﬂ(x).

Definition 19. If lim @:1, then a(x) and S(x) are termed the
Xx—>a ﬂ(X)

equivalent infinitesimals. The equivalence of infinitesimals is denoted by the
same symbol as approximate equality (z)

Thus a(x)~ B(x).

The equivalence of infinitesimals is frequently used on evaluating
function limits because the infinitesimal can substitute the equivalent function.

For instance, it may be shown the functions sin a(x) and a(x) are the
equivalent infinitesimals, as X — 0, i.e.

. sin a(X
jm S )y
a()>0  a(X)
This is a so-called first remarkable limit which is necessary to
remember. The following limits are analogous to the first remarkable limit

jim 940 .
a(x)>0 a(X)

iy &rcsin a(x) _ T im  ArCig a(x) _ L
a(x)—0 Ot(X) a(x)—0 Ol(X)

16. Basic Theorems about Limits

In order to master the technique of evaluating limits it is necessary to
study the following theorems about limits:

Theorem 1. Let lim f(x)=A and lim ¢(x)=B exist for the functions
X—a X—a

f(x) and ¢(x) defined for the same values of X in some neighborhood of
the point a. Then

lim (C, £ (x) + Co(x)) = C,lim £ (x)+C,lim o(x) = AC, + BC,,
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lim 1 (x)p(x) =1lim f(x)lim o(x) = AB,

lim f(x)/ (X)=lim f(x)/limg(x)=A/ B, for lim ¢(X)=
=B=#0,
where C; and C, are constants.

In particular, setting f(x)=¢(x), C; =C, C, =0, we have
lim ((x))” = (lim 1 (x))” = A%, lim G (x) = Clim f (x) = CA.

Theorem 2. If a function f(x) has a finite limit A as X—a then the

limit of any rational degree p of f(X) is equal to the same degree of the
function limit, i.e.

lim (f (x))” = (lim £ (x))" = A"

Besides the first remarkable the second remarkable limit can often be
used for solving examples of limits.
This limit has a form:

I- 1 - I- 1 a\X) —©C,
Jm OO( + (x)j e or lim (L+a()tx) =e

where e =2,7182....
Remark: for evaluating limits containing logarithms it is necessary to
know that if lim f(X) exists and it is positive, then
X—a

lim In f(x)=Inlim f(x) andif lim In f(x)=Inlim f(x) = A,

X—a

(A is a number) then |XIrTal f (x) =€". It follows from properties of continuous
-

functions which will be considered in sec. 18.
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Let us consider two examples using this property.
: 3
Example 4. Compute |X|£Tg (1+tgx)x.

Solution. Let

3
X

3
y = (L+tgx)x, then In y = In (L+tgx) =§In(1+tgx).

Passing to the limit we obtain

jim 2in(L+ tgx) =3tim M) gy, INA10X) ) toX

=3, so
x>0 X x—0 X x—0 tgx x—=0 X

lim (1+tgx)i =e’,

x—0

X

Example 5. Find lim
x—0 X

Solution. Let y=€"-1—>e*=y+1—>x=In(y+1). It is evident

€=l jim Y 1

X y=0 In(l+Yy)

that y —0 if x—0 thus lim

17. Examples of Evaluating Limits of functions

Let us consider examples of few types of evaluating limits using the
theorems about the limits of functions and infinitesimals as well as the first
and second remarkable limits.

We'll show some nondifficult methods in technique of computing of
certain kinds of limits.

_ (2x+3)°(3x-2)°
Example 6. Find lim (2x+ )5( ) :
X X°+5

Solution. Here the entire rational polynomials of the fifth degree are
found in the numerator and denominator. Seeking the limit of the ratio of two
entire polynomials to x, as X —«, the both members of the ratio preliminarily
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it is useful to divide by x" where n is the highest polynomial degree. In this
case N=5. Then we get

im (2+370°@=2/x7 _M@+3/7limE-2/x)" _
X 1+5/ x°

lim(1+5/ x°)

X—00

(lim 2 +1im(3/ x))* (lim3-1im(2 / x))?
- lim1+1lim(5/ x°)

X—>0 X—>00

The limit of constant is equal to this constant. That is

lim2=2,lim 3=3,lim 1=1,

X—>0 X—>0 X—>0

and fractions

32 5
X X x°

X

are infinitesimals, as X — o thus

Iim2/x=Ilim3/x=lim1/x=0.

X—>00 X—»00 X—»0

Hence our limit is equal to

3 _ 9\2 32
lim (2x+3)5 (3x—-2) :23 _70
X X>+95 1

c e 7. Eing lim 7x* +3x* -12
xample 7. Find 1M PV

Solution. Acting in the same manner let us divide the numerator and
denominator by x*:

! 743/ x2-12/x¢ lim7+1im3/ x* —lim12/ x*
im

— X—>© X—>0

x> 2-6/x" lim2—1limé6/ x*) ’

X—>00 X—0
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since lim 7=7,1lim2=2,lim 3/x*=lim 12/x*=1lim 6 /x*=0, then the sought

X—0 X—0 X—0 X—0 X—0

for limit will be equal to

X +3x" 12 7
lim n =—.
e 2X—6 2

Grounding in the foregoing examples we can do the following
conclusion: if there are polynomials of the same degree in numerator and
denominator the limit of their quotient as X —oo will be equal to the ratio of

coefficients of the highest degree of x.
The analogous manner we can use in many cases on fractions
containing irrationalities,

. . 2x*-3x-4
Example 8. Find lim .

Solution. Here there is irrationality in the denominator. Then we divide

the nominator and denominator by x%:

> 3/ x_4/x2 lim2=lim3/x—lim4/x’

Iim — XD>®© X—>0 X—>00 :2
o 1+1/ x* liml+lim1/ x*
X—00 X—00

In order to show the methods of finding limits of the quotient of two
functions as x—a where a is some number we consider the following

examples.
Let there be given two entire rational polynomials P(x) in the

numerator and Q(x) in the denominator and let P(x)=0 and Q(x)#0 then

the limit of the fraction !(lﬂ;l P(x) / Q(X) can be found by direct substitution

X=a.

3
Example 9. Find |im 2X +1.
X—2 )(2 -3

Solution. Let’s substitute the limiting value X =2 and get:
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23+l 2-28+41

17.
2 x*-3 2°-3

The indeterminate form we have when P(a)=Q(a)=0 then it is
necessary to divide the denominator of the fraction one or several times by
(x—a), because in this case the number a will be the root of these

polynomials.

2
_ : - 2
Example 10. Find lim X2¢
x>l X*—4x+3

Solution. Substitution X=1 vyields zero in the numerator and

0
denominator. Then we are obtain the indeterminate form of the kind {—}

0

Dividing the numerator and denominator by (x —1) we get

X =3%x+2 . (x-D(x-2) 1-2 1
lim ——=Iim = =—.
-1 X°—4x+3 ! (x-D)(x-3) 1-3 2

i 1 2
E le 11. Find lim — .
xample ind 1Im (1_)( 1—x2j

Solution. Substituting x=1 we get the indeterminate form {oo—oo}.
Reducing the difference in parenthesis to the common denominator by
(1-x), we obtain

= =—lim =—=.
-1 1—x -1 (1-x)21+x) 2

lim

x—1

1 2 . 1+x-2 ] 1—x 1
> =lim————=—1
1-x 1-x

We can reduce the expression containing irrational form either by
change of variables or by transposition the irrationality from the numerator
into the denominator or otherwise from the denominator into the numerator
simultaneously multiplying and dividing irrationalities by the conjugate
expression.

Let us solve the following examples using both these methods.

: . Jx -1
Example 12. Find lim :
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Solution. The numerator and the denominator of this limit contain

irrationalities. Let us bring in the fraction the variable y12 =X. We may

assume the power of this new variable is equal to the least common multiple
of the radical indices 3 and 4. The least common multiple equals 12 and if
X—1 then y—1 as well.

Thus

-1 y? -1 y' -1 - +H0° +1) _
Ilm— lim _Im _I|
o1 gy Y1 e () yeD)
_ 22 4
1+1+1 3

Example 13. Find lim 22¥¥ =3
x>7  x°—49
Solution. Multiplying the irrationality in the numerator by the conjugate

expression (2++/x—3) and writing down this expression in the denominator
we obtain

lim (2 «/x (2+x-— )=—Iim (x=7) _
X7 49)(2+xfx 3) T (x=T)(x+7)(2+x-3)

i 1

Ix'fg (x+7)(2+JE)__%'

Example 14. Find I|m3 Yx+9

1 Bx

Solution. In order to find this limit we also apply the foregoing method
then

lim 3—x+5 (3 Jx+5)B+vx+5)1++/5- x)

>4 1-J5_x = 1-5-x)B++x+5)1+5-x)

_lim (x—4)A+~5-x) 1+«/5—4:_;
4 (x—4)(3+~/x+5) 3+J5+4 '
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X—4
Example 15. Find limIn—— .
P x—>4 o\/x+4—\/§

Solution. Preliminary let us recall the remark of the preceding section
then this limit is equal to

imin——=%  intim =4 nlim AW 4+4B)
=6 x+4-\B xw? B (e a B4 +B)

 nlim ¥=AEX+4+8) = Infim (VX7 4 +VB) =In28 = na2.

x4 (x+4-8)

. . . SinalXx
The first remarkable limit ( lim —()

a(x)>0  a(X)
the various trigonometric formulas of transformation for evaluating limits
containing trigonometric functions.

We suppose that lim sinx=sina, lim cosx=cosa are known.

X—a X—a

Sometimes it is useful to apply the property of equivalence of infinitesimals.
Changing an infinitesimal with their equivalent functions.

=1) is often used as well as

2
: _ _ X
Let us show that the function (1-cosx) is equivalent to — as X — 0. It

needs to show that the limit of their ratio equals to unity. We consider

. 5 X . X . X . X . X
1— cos X 2sin” — sin—sin— sin— sin —

lim ——""—lim 2 _lim —2 2 _lim —2—|im —2=1,
x>0 X“[2 =0 X.x[2 x>0 x[2-x[2 x>0 x[2 x>0 x[2

X2
So 1—COSXN?

_ . Sin 3x
Example 16. Find lim
x—>0 X
. . SIn3x 3x
Solution. We have lim =lim—=Ilim3=3.
x—0 X Xx—0 X x—0

Example 17. Find Imtg4x.
x—0 thX
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. . tgdx . 4x . 4 4
Solution. We get “mtg_x: lim2X —lim2=2
x—0 tg5x x>0 5x x>0§F5 §

In a similar way we can show that arctgx =~ X.

.. arctgx
Example 18. Find |XI£T(‘)I vt

Solution. We change y=arctgx then X=1gy and now as X — 0 then
y — 0.

lim 29X _ jim Y.

x—0 X y—0 tgy
Example 19. Find lim arf:tg2x .

x>0 SIN3X

Solution. Using the equivalence to arctg2x and sin 3x functions 2Xx
and 3x, we get

. _arctg2x . 2x . 2 2
lim — =lim—=lim=-=—.
x>0 sIn3x x>0 3x x»03 3

Example 20. Find Iimw.
X—T mT— X

Solution. We substitute sin g: cos(% —gj then

. 1-sinx/2 . _1-cos(n/2-x12) .. 2sin*(n/4—x/4)
im———=Iim =lim =
x>r - X x—m T—X x>r  A(nld—-x14)
_1ipSin(n/4-x/4) |imsin(n/4—x/4)=1-1-0=o,

2 xomn (TC/4—X/4) X—>7 2

sin(c/ 4—x/4 .
(m ):l, since z—£—>O and sm(z—f)—)o as
4 4 4 4

h lim
o o (nl4—x/4)

X—> 7.
Remark. When we deal with limits of the kind lim o(x)” it is necessary

to take into account that:
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a) in the case if there are finite limits !(ILT; P(X)=A and limy(x)=B

then C = AB;
lim w(x)

b) if imp(x)=A#1 and limy(x)#zw© then C=limA"®=4 "

X—a

Consequently this example as well as the preceding example we can solve
directly.

c) if IXILQ o(x)=1 and leiral w(X)=o0 then we suppose ¢(x)=1+a(x)

(where a(x) is infinitesimal and a(x)z gp(x)—l) as Xx—a then

C=lim {[1+ a(x)]l’ a(x)}“<x)~w(x)

X—a

thus  lim [1+ a(x)]lla(x) =e

X—a

that is the second remarkable Ilimit and

lim a(x)y(x)
C — ex—»a

x>0\ 5 —x

Example 21. Find Iim(2+xj :

. . . ([ 2+ 2 . .
Solution. Since Ilm( x] == and limx =0 then itis equal to
x>0\ §5—x 5 x—0

2_ X
Example 22. Find lim xz 2 :
x>0 | 2x° +3

_ . x2 =2 1
Solution. Here lim 5 =— consequently

X—00 - 2
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lim x2

because 2*>* is the infinitely large magnitude.

mx
Example 23. Find lim (1+—j :
X—0 X

. . k k
Solution. Let us substitute t=— then as x—»o,t—>0 and x=?
X

Writing this substitution under the symbol of the limit we obtain

lim (1+ 5) —lim (1+t)™"* =lim [(1+t)1“]"k —e™,

X—>00 X t—0 t—0

Since lim (1+t)"' =e then the limit equals to ™.

t—0

Example 24. Find Iim(ij .
x>\ 14+ x

Solution. In order to find this limit we add and subtract unity in the

[1Pt)

numerator and use the transformation of the Remark (“c”) then we have

X x —(x+1) _é
lim( 2171 Cgim (1= —gim| (12 =2 _
x>\ 14 x X0 1+x X—20 1+x

Applying the solution of the preceding example we get

—(x+1)
) — ) _ 1
lim| 1+ —— =|Im(l—t) Y'_e wheret=——— then
X—>00 +x t—0 x+1

. X
lim (—j 1

- - x_2 x+2
Example 25. Find lim :
x>0\ x+2

Solution. Dividing the numerator and the denominator of this fraction by
x and using the solution of the example 18 we obtain
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lim -

X—>0

(1_2/xJX(1_2/xj2_ lim(L-2/ 0 lim1-2/x)° 2

= = =€
1+5/x) \1+5/x) lim(1+5/x) lim(1+5/x) e

X—>00 X—>00

18. Continuity of a Function

It had been said above that the notion of the continuity of functions is
fundamental in mathematics that is why it needs particular attention.

Let a function y= f(x) be defined at a point X=X, and some
neighborhood with the centre at the point X,. Let us denote Yy, = f(Xo) and
let Xp have an increment AX. Then this function will have the new value
equal to Yo + Ay = f(XO +AX) and the increment of the function will be equal
to Ay = f(Xg +Ax)— f(Xp).

Definition 20. A function y= f(x) is called continuous at a point

X = Xq Iif it is defined in some neighborhood X, and

lim Ay =0.

AX—0

It means that an infinitesimal increment of a function corresponds to
an infinitesimal increment of argument. Sometimes it is convenient to use
another definition.

Definition 21. A function y = f(x) is said to be continuous at a point
X =Xg if it is defined in some neighborhood of the point X, and if the limit of
the function as the independent variable X tending to X, exists and it is equal
to the particular value of the function at the point

lim f (x) = f(x,).

X-))CO

It follows from this definition that the limit of the continuous function to
be found as X — X, it is sufficiently to substitute the X instead of X in the

expression of the function. It means that the symbol of the function and the
symbol of the limit may be rearranged.
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We can perform the arithmetic operations on continuous functions. It is
established by the following theorems:
Theorem 1. The algebraic sum of a finite number of functions

continuous at the point X is a continuous function at that point;

Theorem 2. The product of a finite number of functions continuous at
the point X, is a continuous function at that point;

Theorem 3. The quotient of two functions continuous at the point X is

a continuous function at the point X, provided that the denominator does not

turn into zero at that point;
Theorem 4. A function of a function composed of a finite number of
continuous functions is a continuous function.

Remark. If the limit of a function go(x) as X —> Xg or as x —> o0 exists

and it is equal to a finite number and the function is continuous at the point
X= XO then

lim f (o(x)) = f (lim p(x)).
X—>Xg X—>Xg

These theorems can be read in all mathematical text-books therefore
we don’t introduce their proofs.

All elementary functions are continuous in the domain of their definition.

Let us show this assertion by examples

y =sin X; y+ Ay =sin(x + Ax);
Ay =sin(x+Ax)—y or Ay=sin(x+Ax)-sin X;

Ay = 2sin x+A2x—xCOSx+Ax+x;

2

Ay = 2sin gcos(x + gj ;
2 2

but AIiTOAy: lim 2sin(Ax/ 2)cos( x+Ax/2)=0.

AX—0
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Using the indicated above notion of the left-hand sided limit we can
write

lim f(x)=f(x,—0).
X—=>%;—0
Analogously for the right-hand sided limit

lim f(x)=f(x,+0).
X—>Xy+0

Now we introduce the third definition of the continuity of a function
which means the necessary and sufficient condition of the continuity at the

point X = Xy, namely

f (% —0)= f (%) = f (% +0).

In the case if there is no the double equality it is said that the point X, is

the point of the discontinuity of a function y = f(x).

Let us present the classification of points of the discontinuity of a
function by following definition.

Definition 22. A function y = f (x) has a discontinuity as X — X if it is

defined both from the left and from the right of X, but at the point X;, at least

one of the continuity conditions is not fulfilled.

We usually distinguish between two basic kinds of discontinuity.

a) discontinuity of the first kind.

Such a case occurs when there exist the limits on the right and of the
left and they are finite, i.e. when the second condition of continuity is fulfilled
and the rest of the condition for at least one of them is not fulfilled.

Example 26. It is required to determine the character of the point of
discontinuity:

1
y=f(x)=2+1/ (1+2“).

Solution. The point x =1 is the point of discontinuity since 1—x=0.
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Let us evaluate the left-hand sided limit of the function at that point

1
lim f(x)= lim (2 +1/ {1+ 2“}].
x—1-0 x—1-0

Since x —1-0, i.e. remaining less than unity, then 1—x >0, hence

Iirlno(l— X)=0, a(x)=1-x
is the infinitesimal, as x —1 (a(x)>0). The inverse value to the infinitesimal

a(x) is the infinitely large magnitude, i.e. Xlirir_loll a(x) =+ consequently

lim 27®) = 400 and finally lim f (x)=2.

x—1-0

Now we research the right-hand sided limit

. . 1
x|—|>r1T+]0 f(X)=X|_I)I;TJO[2+ 1}
1+ 2%

Denoting 1— X = B(x), where ,B(x)SO we have Ximoﬁ(x)zO since

B(x) is the infinitesimal as x —1+0, then lim 1/ f(x) =~ and

-1/ B(x)
lim 2Y2® = |im (—j =0,
x—1+0 x—1+0\ 2

: 1
it follows that lim (~1/ B(x)) =+, and §<1 then

lim f(x)= lim [2+ 1 - J:2+1:3.
1+ 21«

X—1+0 X—1+0

So the point x =1 is the point of discontinuity of the first kind. The

graph of this function in the neighborhood of the point x =1 is shown in
Fig. 10.
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1
Fig. 10. The graph of the function y=f(X)=2+1/ (1+ 2“}

in the neighborhood of the point x=1

Remark. But if f(x) is not defined for X=X, we say that the function
f(x) has a removable singularity at the point X =X,. The meaning of this
term is explained as following: if the point X, is added to the domain of

definition of the function f(x) and if at that new point the value of function is
put equal to the common value of the left-hand and right-hand limits the (new)
function f(x) thus obtained is continuous at the point X,. For example, the

. sin X . . . . U
function y = —— is not defined at the point x =0. But since |Xln33|nx/ Xx=1
X —>

we can introduce a new function, defined for all the values of X and coinciding
with the old one x # 0 which is everywhere continuous:

_[sinx/x, for x=0
y= 1 for x=0

The term “removable singularity” is also applied when a function f(x)
is defined at the point X, and possesses coinciding left-hand and right-hand

limits which are not equal to f (). For instance, such is the point x =0 for
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the function

x, for x#0
=f = .
y (X) {2, for x=0

Its graph can be obtained from of the continuous function y =X if its

point (O; O) is ‘torn out’ and moved 2 units of length upward along Oy .

b) discontinuity of the second kind.
This is the case, when lim f (x) either on the left or on the right is equal

X—Xo
to $o0.

Example 27. It is required to research the point of discontinuity for the
1

function y = f (x) =3-.
Solution. This function has a discontinuity at the point x=0. Let us
1

i = _ .1
consider the left-hand limit lim 3*=0, since lim —=-c. Now we
Xx—0-0 x—0-0 X

1
) = _ .1
proceed to the right-hand limit lim 3% =+o0, itfollowsfrom  lim —=-+co.

x—0+0 x—>0+0 X

So x =0 is the point of discontinuity of the second kind. The graph of
that function in the neighborhood of the point x =0 is shown in Fig. 11.

<V

Fig. 11. The function y = f(x)= 3%
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19. Properties of Continuous Functions

Definition 23. A function f(x) is called continuous on a closed interval

[a;b] if it is continuous at every point of the interval, and at its end-points

Iim0 f(x)=f(a) and Iirbnof(x) = f(b).
X—a+ X—h—

These properties are formulated in the following theorems.

Theorem 1. If a function is continuous in a closed interval [a;b] there

exist at least one point in which the function assumes the greatest value M
and at least one point in which it assumes the least value m on that interval
(see Fig.12).

Theorem 2. If a function is continuous in a closed interval [a;b] then it
means that f(x) assumes any value at least one time concluded between its
least and its greatest values. It means that for arbitrary ¢ € (a; b) there exists
f(c) where f(c)e(m; M) (see Fig. 13).

o
0 a o) c, b X

Fig. 12. A continuous function in a closed interval [a;b]

Theorem 3. If a function is continuous in a closed interval [a;b], it

assumes values of different signs at its (f(a)- f(b)<0) and points, there
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exists at least one point, lying inside the interval in which the function turns
into zero (see Fig. 14).

y A

y

Fig. 13. A continuous function in a closed interval [a;b]

YA

Fig. 14. A continuous function in a closed interval [a;b]
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Finding and researching the point of discontinuity for the function f(X)

1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

Individual tasks. Finding limits.

im (2x+3)(4x - 3)
x—1 5-X

lim 3x3 —5x% + 2
x>0 2%X3 +5x—1
. 3% +x-14
lim 5 ;
x=>2 x“ +3x-10
. Sin 3x—sin X
lim .

Xx—0 th

) ( 1 1 j
lim - Y ;
Xx—0\ XSIN X X

lim (x+4)2x-7);

X—3

4%° +4x+1

lim — B
X—0 2X° —4X° +5

lim

arcsin (x +2)

lim 5
X+ 2X

X—>—2

G +10x+ 21
x>-7 X2 +5x—14

Variant 1

6)

7)

8)

9)

10)

Variant 2

6)

7)

8)

9)

10)

45

_TX% —14x+17
Iim :

x> 12X3 +7Xx—3
X° —2X+4

lim
x—>—o0 2x* +3x? +1

. +J1+3x-1
m ——;

x—0 X

X — 4 X+1
lim (—j ;
x—o\ X+ 3

f(x)=

2_ox

. 3x*4+5x+10
lim 3 :
Xx——0 2X° +15xX + 2
_ 2x%+3x-5
lim 3 R
x—o 7X° —2X° +1

. A2+ X-3
im ———:

x>7 X—7

- (2 _ 4)2X+1
lim :
x—o\ 2X+3

—-16

f(x )—



2)

3)

4)

5)

1)

2)

3)

4)

5)

lim (ixz +x+3);
x—10\ 11

XA —3x% 4+ 7
lim 2 3 ;
x—>—0 X" +2X° +1

. 2x%2 _4x-16
Iim 5 ,
x—>4 X°—5X+4

sin 3(x —1)

lim 5

Xx=>1 X—X

i)

lim (2x —1)(x +2);

Xx—-1

. 3x—x5
lim —
X—0 X° —2X+5

i X +8x+16
lim 5 ,
x—>-42X° +9x+4

. Sin 5x
lim ;
x—0 arctg 2X

(2

Variant 3

6)

7)

8)

9)

10)

Variant 4

6)

7)

8)

9)

10)

46

A+ T7x+6
lim 3 5 .
x—0o 2X° +10x° -3

32 +7x-4
lim 5 ;
x—>—0 X° +2X-1

im 3-x -7
x>-4 \/X+8-2"

. (SXZ 4 ZJX
lim 5 :
X—>00 5x

1

1

14 2%3

f(x)=3+

. Ax%>+3x-2
lim 5 ;
x—wo 5x° 4+ 3x -1

. 2x% —X+7
im —; 5 :
x—-0 3X" —5x° +10

A1+ x—41—X
lim ;

Xx—0 X

. (2x+le1
lim .
x—o\ 2X —4

f(x) =1+

X L]

221



1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

lim (E x> —5X — 6)
x—2\ 2

lim

x> —4x% +28x

x>0 5x% +3x% + X -1

. X% _-5x—6
im 5 :
Xx—6 x° —3x—-18

: arctg 5X
lim — : ;
x—0SIN X —SIN 3X

. (1 1
Iim| ——

x—0

lim (x2 —2X+ 3);

X—5

. 3x%>+10x+3
lim 5
x—>—0 2X° +5X—3

. X2 —10x+21
Iim 5 .
x—>7 X —14x+ 49

. 2X-Sin X
lim 5 ;
x—0 arctg *(— 3x)

2x  In(2x+1

)j;

: 1 1
im| ———-——1|;
an( In(2x+1) ZXJ

Variant 5

6)

7)

8)

9)

10)

Variant 6

6)

7)

8)

9)

10)

47

. 3x3-2x+5
lim 5 :
x—>0 2X° +4X -3

23 +7x-1
lim 1 .
x—>—0 3X" +2X+5

. AJ34+X-2
Iim ————;
X—-1

x—1

—4
 (x+1)
Iim| —= .
x—o\ X —3

f (x)=In(sinx)

534+ 7x%+5
lim 1 ,
x—=0]10X" —=11x+8

3t —2x+1
Iim 5 .
x—w0 3X° +2X -5

o JIX+1-4-X
lim ;

x—0 X
¥ —1 X+2
lim (—j )
x—o0\ X + 2
1
F)=—=
5+3%3



1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

IM1@X2—8x+9%

X—2

lim

S x4+ x

x>—o X +3x—2

. x2+2x-15
lim 5 ;
x=>3 Xx° —8x+15

lim 5

Iim x-In x;
x—0

Ihﬂ@@—2x+4)

Xx—1

22X+ T7x+3
lim 5 ,
x—» 5X* —3X+4

Iim

. 1—e¥
lim :
x—0 tg 2X

lim sin x-In x;
x—0

arcsin (1-2x)

2x2—5x—12_
x4 x2+x-20

Variant 7

6)

7

8)

9)

10)

Variant 8

6)

7)

8)

9)

10)

48

O Tx% —x* = 3x
lim 1 .
x—0 4X" +3X—2

. 3x8-5x% 42
lim 3 ;
x—>—0 2X° +4X -5

Iim3—\/5+x_
x—>41—/5-X

5X—1 X+3
Iim( j .
x—o\ BX +1

rog =1

X

22X —4x+T
lim 7 ;
x—0 6X" +2X—-10

_ BX2—4x+2
lim 3 :
x—>—0 4X° +2X =5

"m\Bx—z—z_
X2 AJX+2—-2"

2X—1 X+3
lim ( ) ,
x—oo\ 2X+ 3

1

f(x)=2+
14 21

1 L]



1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

im (x+1)x-2)
x>9  6-3x>

= X%43x+1
lim 5 :
x—o 3X°4+X—-5

i 2x2—4x+2_
Im )
xool X2 —5X+4

lim
x—1 X—-1

i ( 1 1)
im| ———|:
x>\ X—1 Inx

lim (x —3)2x+5);

arcsin 5(x —1)

X——2
3+ x%-6
lim 5 .
x—0 2X° +3X+1
r X2 +8x+16
im ;
xsa 2X% 49X + 4
. SIn5x
lim .
x—0 arctg 2X

i ( 1 1 j
im| ———|;
x>\ Inx x-1

Variant 9

6)

7)

8)

9)

10)

Variant 10

6)

7)

8)

9)

49

. 8x°+4x* -3
lim 7 5 .
x—wo 5X*" —3X° +6

_ TX?+5x+9
lim 3
x—>—0 144X —X

. ABx=-1-2
m —M—;

x—1 X-=1

. (3x+1)4x
Iim ,
X—>00 3X —1

f(x)=22"

7x3+8x% +1
lim 3 ;
x—=0]12X° —9X+5

. BX2—4X+2
lim 3 ;
x—>—0 4X° +2X =5

1+ X—J1-X
m ;
Xx—0 X




1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

lim (5x2 —2X+ 4);

X—2

. 4x%2 +5x—7
lim 5 :
x—0 2X° —Xx+10

| 3x2—7x—6_
Im ]
3 2x% +x—21

i sin 5x
im ——;
x—0 arcsin 2x

lim tgx-In x;

x—0

im (2x-5)3x—4)
X—2 X+ 2

lim 3x* +2x+1
x—o x4 - x3 +3x
lim x> —2x—8 _
x>-2 X2 +4X+4
: tgX

lim 5 ,
x—>0]1—g X

lim x"*;

x—0 ’

Variant 11

Variant 12

50

6)

7

8)

9)

10)

6)

7

8)

9)

10)

_ 3x%—x+4
lim 3 5 .
x—0 2X% —4X° +3

T +ext =X
lim :

x>0 2X*+6X+1

J3x+1-2
x—1

. (Zx—ljx
Iim ,
x—o\ 2X +1

f(x)=— 2

3+5%2

lim

Xx—1

. BX°+4Xx+3
im —————;
x—=010x” +5x° -1

4-3x-2x°
3x* +5x

. JB5x+1-4
lim 5 ;
x=>3 X +2x-15

. (zx_lj”
lim ;
x—ao\ 2X + 3

f)=—r

34 5%

lim

X—>—00




1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

Variant 13

i @—4@@+5X 6)
X—>—2 X—2
3 a2
lim 5x4 3x2+7; 7)
x—>—0 2X" +3X° +1
2
lim x2 3x—-40 ; 8)
x>8x° —10x+16
. 2arcsin 3x
m —; 9)
x>0  tg3X
_ a3X
jm £, 10)
x=>0 X
Variant 14
lim (4x—20)(2x-10); 6)
x—10
2 —_
Ih15X 3Xt}i 7
x>0 1+4+2X—X
) e
’ 8
H;9x2 —6x+1 )
i arisu1(4~—-x); )
x—>4 xX°-3x—-4
2
. X
lim : 10
x—>0]__e3x )

51

. 8x3+5x-1
lim 3 5 .
x—0 2X” +4X° +3

. 7-3x*
lim 3 5 ;
x—>—02x° +3x° =5

. B+ x+2
Iim ——;
-1-X

Xx—>-1
. (3x + 4)“‘3
lim :
x—mo\ 3X—1
1

2° -1
1

f(x) =

2;+1'

O BXP+TX+2
lim 5 ;
X—=w0 2X° —2X+5

o 8x*+7x° -3
lim 3 :
x—>—0 3X° —5X+1

N3X+1-4

X% —5x

x—1 X+2
mn(———j ,
x—o\ X+ 3

f()=—

34 3%

lim

X—5




1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

X—4

23 +T7x=2
lim 3 :
x—o 3X° —X—4

i 8x3 -1

Im ;
14x% —4x +1
x—>5

3

. COSX—COS X
lim 5 ,
x—0 X

) 2X
lim :
x—0 32X -1

lim (9x —5)(x +5);

X—5

. 18%% +5x
lim 5 ;
x—0 8 —9x“° —3X

. 9x%—6x+1
lim ;

2 H
X_>;3x +2x-1

lim 5
x—0 X
32X 1
lim :
x—0 2X

lim (1 X + 1)(x -5);

COS3X —COSSX

Variant 15

6)

7

8)

9)

10)

Variant 16

6)

7

8)

9)

10)

52

. 8x%+5x-4
lim 7 .
x—0o 3XT +6X+11

. 2x3+3x%+5
lim 5 ;
x—>—0 3X°—4x+1

lim VX+1-3
x84 —/X+8

. (5x+1j2x
lim .
x—w\ OX —1

1
f(X)=e ~*,

_ 25x4+7x% -3
lim

x> 8X° +5X+4

2x3 —3x+1
IX+5

Iim

X—>—0

2

x—0 X
. (2x+ 4)“‘3
lim .
x—o\ 2X—1
3
f(X):x+8
x+2

A3 +1-+4/1-2x
m ;



1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

lim (E X2 +5x—1j;

x—2\ 2

o 11x3+3x
lim 5 ;
X—>—0 2X° —2X+1

. 10%2 —21x+2.
lim 5 ,
x—0.1x“+0.9x-0.1

arctgdx
10x _1 ’

lim

x—0 e

lim x-ctg X;
x—0

. X>—-5x—4
lim ————
x—>7  X+7

. 8x%>+4x-5
lim 5 ;
x—0 4X° —3X+ 2

; xz—x—12_
m —
x>-3 X2+ X—6

. C0S3X—COos X
lim _ ,
x—0 SIn 5x

. T
lim tg x| X—=|;
X—>7/2 ( 2)

Variant 17

6)

7

8)

9)

10)

Variant 18

6)

7

8)

9)

10)

53

X +7xr 12

lim 5 3 .
x—0 3X” 46X~ —3X
i 10x -7

lim 2 3 o

x—o 3X" +2X° +1

o J1+x—+1-X
lim ;
Xx—0 3X

. (x+3jX3
Iim | —— .
X—>00 X—2

f (x) =In(cos x) .

_3x°+4x% -2
lim 1 :
x—0 (X" —2X+5

_ 8x*+3x+5
im — 7
x—>—0 4x° —2x° +1

Vx?+1-1

im ————;
Xx—0 X
_ (3x+1)x+2
lim ,
X—>00 3X—1

f (x) = (1+x)arctg

1_X2 .



1

S

2)

3)

4)

5)

1)

2)

3)

4)

5)

lim (2x —8x+9);

X—>—6

lim 1
x—o  2X7 41

4x% +4x+1

12x2+3x+1’

lim
X—=>——
2

i arcsir21 (1-x)
x-»1 x“-=1

lim arcsin x-tg X;
x—0

X—>—4

3% +4x—7
lim 4 3 ,
x—o0 X* —2X7 +1

r X2 —7x+10
A %2 —10x+ 25
. SIn X—sin 5x
lim ,

x>0  Xtg 2X

lim In(1—x)1- x);
x—1

8x* —4x*+3

lim (3x2 +2X+ 4);

Variant 19

6)

7

8)

9)

10)

Variant 20

6)

7

8)

9)

10)

54

. B6X>+4x° -3
lim 1 .
x— X" +3X+6

. 6x3+5x%2-3
lim 5 ;
x—>—0 2X° —X+7

i N2X+1-3
Xx—>42 —~2X—4

. 4x%+8x-3
lim 3 5 ,
x—w0 3X° +5X° +5

. 3x* +5x
lim 5 ;
x—>—0 2X° —3X =7

im VX+1-1
x>0/X+4 -2

. (3x-—2)2x
lim ,
x—o\ IX+3

1
f(x)= :

1+ el




1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

(x +1)(x+4);

lim
3-3x?

X—>—3

O TX3 44X

im —————;
X—0 X~ —3X + 2
i xz—x—20_
im )
ot X2+ X —12

arctg 2(x—1)

X% — X

: ( 1 1)
im| ——=|;
x—>0\sin X X

lim

Xx—1

lim (2x2 = 3xX7x ~15);

X—3

o 1+4x—x4
lim 5 7
X—0 X 43X 4+ 2X

_ x2+4x+4_
lim ;

X—>—2 X3 +8

_arcsin? x
im —:
x—0 X-Sin X

: (l 1 j
im| =——|;
x—>0\ X  Sin X

Variant 21

6)

7

8)

9)

10)

Variant 22

6)

7

8)

9)

55

o x34+2x%-3
lim yE— .
x—o BX" — X +4

. 8x°—4x3+3
lim 3 ;
x—>—0 2X° +X—7

J2x—1-1
x—1

. (4X—F1)X5
lim ,
x—o\ 4X —1

1
f(x)=e*?.

lim

Xx—1

o 2x3—4x° +3
lim 5 ;
x>0 4X° +7X+5

o 2X2—T7x+1
lim 3 5 ;
x—>—0 X° +4X° -3

lim VX+4-3
x—5/X—=1-=2"




1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

Iim1(4x2 —X —10);

X—=
2

lim

2x? —5x—63
X—7 X2 —6X—7

lim

. Sin 3x
lim ;
x—0 arctg 2X

lim (sin x)*;
x—0

lim

Xx—1

X+1

o 8x3+x% -7
lim 5 .
x—w0 2X° —5Xx +3

x2—2x—15_
x>-3 X2 +4X+3

lim

_ tg2(x-1)
1 a6

1 sin X
lim (—j :
x—0\ X

2x3+7x2 -2
x> 6X° —4X+3

(x—4)3x+4) ;

Variant 23

Variant 24

56

6)

7

8)

9)

10)

6)

7)

8)

9)

10)

. 3x°-5x+14
lim 3 5 ;
x—0 X +2X° =3

. bx*—2x3+3
lim 5 .
x—>—0 2X° +3X—7

NX=1-2
X-5

. (2x+1)”
lim :
Xx—oo\ 2X —3

lim
X—5

x4+ x+1
lim 3 5 ,
x—o X7 +5X° -1

: 3x+1
im — 5 ;
x—>—0 X —5X” 44X

NAX+1-3

x> -8

. (x—4j5x
im| ——| ;
x—0\ X+ 3

1

Iim

X—2

f(x)=3+

1 .

1474



1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

im (x—4)4x-3) ;
x—1 4—x

4
lim 5
x—>—0 24 3X° + X

i 2x2+x—10_
Im :
x>2 X2 —3X+2

. sin 3(x—2)
im ———2;
-2 tg(x-2)

lim (tg x)°*;

x—0

lim ix—1 5X+6);
[ x-1fsx+0

x—11\ 22

3t —2x? -7
lim 7 ,
x—-0 3X" +3X+5

. BX% +4x-1
lim

15x% —6x+1
x—>g

. X+1
lim _ ;
x—>-1arcsin (2x +2)

im| —| ;
x—0 tg X

X —2x% +5x*
4

Variant 25

6)

7)

8)

9)

10)

Variant 26

6)

7)

8)

9)

57

_ 4X® —5X+7
lim 3 :
x—o 2X° +3x -1

34 +2x%-8
lim 3 .
x—>— 8X” —4X+5

iy VA+3X-2
x—0 X ,

. (4x—4sz
lim ,
x—oo\ 4X —3
X° —4
X—2

f(x)=

i 7x? —5x+4
x—o 3x* +2x -2
i 3x* +2x-4
x> 3x% —4X+1’

lim
X—5




1)

2)

3)

4)

5)

1)

2)

3)

4)

5)

lim (5— 2X — xz);

X—2

lim

X3 —2x+4

x>-o 2%X% +X—5

_ 2x2—2x—4_
lim

X352 x2 —4x+4

lim

x—0 X

2

lim (cos x)**;

Xx—0

X—2

lim

COS X —COS3X

lim (%x + 5)(X -3);

4x3 +5x* —3x

x>0 3x%4+X-10

4x% +3x -1 _

. 1™
lim ;
x—0 arctg 2X

lim (ctg X)Sin .

x—0

m ;
M 4x2 _17x+ 4
X—=

Variant 27

6)

7)

8)

9)

10)

Variant 28

6)

7)

8)

9)

10)

58

C12x3 +4x -7
lim 3 > :
x—>0 4X” +5X° -3
i 2x—-13

lim - 3 ;
x—o X' —3X° —4X

1-V1-x%

2

lim

x—0 X

. (3x—1)X4
Iim .
x—o\ 3X+3

f=—r

24 2%

123+ 7x=2
lim 3 ;
x—o 6X° +5x+10

o 2x%2—3x+1
lim 3 5 .
x—>—0 X~ +2X° +5

Im142x—1—J§_
X—>3 X—3 ,

_ (x_lj"’x
im| —— |
x—o\ X+ 4

1:(x)=arc:tgi
X—95"




Variant 29

3)

4)

5)

1)

2)

3)

4)

5)

iim (2x — 6)(20x —10); 6 lim < +2x' 13,
Xx—1 X—>0 6X5 + X3 +10 ’
_ 2x% +10x-11 . x> —81
lim — ; 7)o lim — :
x—>—o 3x* —2X+5 x—0 3X° +4X + 2
2
i 3X2 + 2X l; & lim M+ 3x -1
X_);9X —6x+1 x>0 22X
. arcsin % 3x _(2x—a\*
lim ; 9) Im ;
x—0 X - arctg(— X) x—oo\ 2X + 3
3
lim (In x)**; 10) f(x)= X+l
X—>00 X+1°
Variant 30
3, 2
lim (xz—x+3); 6) lim 10x"+ x +5;
x—3 x— 5x* —3x+8
. 5x?—3x+1 . IxX3+3x—4
lim —— : 7 lim — :
x—w0 3X° +X—-5 x—>-o 2X° —5x+1
2 o _Ja_
lim XJ;—XZ; 8) lim 2ﬁ;
x-1 x4 -1 x—0 X
2x _\3x+2
jm 2 (i 1) 9 lim (4’( 1) ;
x—0 arctg *(— 2X) x—o\ 4X + 2
lim (tg x)™*; 10) f(x)= arctg1
x—0 X’

59




Theoretical questions

. Set. Element of set.

. Union. Intersection. Difference.

. Closed interval, open interval, half-open interval.

. Neighborhood of a point.

. Closed set. Bounded above (below) set.

. Notion of a function.

. Domain of definition of a function.

. Range of a function.

. Independent variable.

.Dependent variable.

.Ways to define a function (analytic, tabular and graphic methods).
.Rational function.

.Composite function.

14. Implicit function.

15. Inverse function.

16. Properties of a function: boundedness and unboundedness, increasing
and decreasing of a function, oddness and evenness, periodicity.
17.Numerical sequence.

18. Definition of a limit of a sequence.

19. Infinitesimals. Infinitely large values.

20. Definition of a limit of a function.

21. Arithmetical operations above functions which have finite limits.
22.First remarkable limit.

23. Second remarkable limit.

24. Comparison of infinitesimals.

25. Basic theorems about limits.

26. Left (right)-side limit.

27.Continuous function at a point.

28. Properties of continuous functions.

29. Classification of breaks.

30. First kind discontinuity.

31. Second kind discontinuity.

32.Removable discontinuity.
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