TASKS for the independent work

	VARIANTS
1	Віслогузова Анастасія Сергіївна
2	Гікалова Марія Вікторівна
3	Гречаник Уляна Максимівна
4	Лемба Ілля Віталійович
5	Облог Маргарита Віталіївна
6	Реброва Ксенія Артемівна
7	Рибальченко Дар'я Андріївна
8	Циганков Андрій Сергійович

Variant 1

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(7 < X < 20).

4) Draw the distribution polygon.

X	1	5	9	11	18	23	25
P	0,19	0,24	0,12	0,10	0,19	0,06	0,10

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,22**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-meansquare deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals *a*, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

- b) find formulas of functions f(x) and F(x);
- c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the interv $(a\pm 3\sigma)$

with the probability

No	а	σ	(α1; β1)	3
Variant 1	30	6	(23, 35)	2

Variant 2

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(20 < X < 30).

4) Draw the distribution polygon.

X	2	7	9	13	19	21	26
Р	0,15	0,17	0,13	0,12	0,06	0,13	0,24

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,39**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-meansquare deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals *a*, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

b) find formulas of functions f(x) and F(x);

c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the interv $(a\pm 3\sigma)$

with the probability

No	а	σ	(α ₁ ; β ₁)	3
Variant 2	21	7	(11, 19)	3

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(10 < X < 24).

4) Draw the distribution polygon.

X	2	5	9	11	17	20	24
P	0,27	0,17	0,10	0,08	0,26	0,07	0,05

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,71**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-mean-

square deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals *a*, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

b) find formulas of functions f(x) and F(x);

c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the interv $(a \pm 3\sigma)$ with t

with the probability

No	а	σ	(α ₁ ; β ₁)	3
Variant 3	24	6	(11, 18)	4

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(18 < X < 24).

4) Draw the distribution polygon.

X	2	7	8	11	17	21	26
Р	0,09	0,21	0,28	0,06	0,12	0,11	0,13

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,23**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-mean-

square deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals *a*, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

b) find formulas of functions f(x) and F(x);

c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the interv $(a \pm 3\sigma)$ with the probability

No	а	σ	(α ₁ ; β ₁)	3
Variant 4	19	5	(17, 30)	2

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(15 < X < 25).

4) Draw the distribution polygon.

X	2	7	8	11	17	21	26
P	0,09	0,21	0,28	0,06	0,12	0,11	0,13

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,36**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-mean-

square deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals a, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

b) find formulas of functions f(x) and F(x);

c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the interv $(a \pm 3\sigma)$ with the probability

No	а	σ	(α ₁ ; β ₁)	3
Variant 5	20	7	(19, 26)	5

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(7 < X < 15).

4) Draw the distribution polygon.

X	1	5	8	12	15	23	24
P	0,05	0,09	0,27	0,15	0,23	0,14	0,07

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,77**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-meansquare deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals *a*, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

b) find formulas of functions f(x) and F(x);

c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the inter $(a \pm 3\sigma)$ with the probability 99,73% (approximately equals 100 %) using *three sigma rule*

 No
 a
 σ
 (α_1 ; β_1)
 ε

 Variant 6
 25
 5
 (11, 16)
 4

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(15 < X < 23).

4) Draw the distribution polygon.

X	2	6	10	12	17	23	25
Р	0,16	0,13	0,07	0,22	0,09	0,14	0,19

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,29**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-mean-

square deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals *a*, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

b) find formulas of functions f(x) and F(x);

c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the interv $(a \pm 3\sigma)$ with the

with the probability

No	а	σ	(α1; β1)	3
Variant 7	20	7	(19, 27)	5

Task 1. A distribution law of a discrete random variable X is given.

1) Calculate a mathematical expectation M(X), $M(X^2)$, a variance D(X) (using 2 ways) and a root-mean-square deviation $\sigma(X)$, a mode Mo(X), a median Me(X).

2) Find a distribution probability function F(X) and draw its graph.

3) Calculate the following probabilities: P(20 < X < 35).

4) Draw the distribution polygon.

X	2	5	8	14	18	20	27
Р	0,05	0,18	0,05	0,11	0,08	0,20	0,33

Task 2. The random variable X is the number of occurrences of the event A in 7 independent trials. The probability of the occurrence of the event A in each trial equals **0,63**. Tasks:

1) construct the binomial distribution law of a random variable X;

2) draw the distribution polygon of a random variable X;

3) calculate a mathematical expectation M(X), a variance D(X) and a root-meansquare deviation $\sigma(X)$ of a random variable X.

Task 3. The mathematical expectation of a normal random variable equals *a*, the rootmean-square deviation equals σ .

a) Define the variance D(X) and the variation coefficient v(X);

b) find formulas of functions f(x) and F(x);

c) plot graphs of f(x) and F(x);

d) the probability that a random variable X lies in the interval (α ; β);

e) find limits of all values of variable X on the interv $(a \pm 3\sigma)$ w

with the probability

No	а	σ	(α ₁ ; β ₁)	3
Variant 8	34	6	(24, 31)	3