
Theme: Differential calculus 
of functions of many 

variables. Application of the 
gradient vector in the linear 
model of international trade. 
Integral calculus of functions 

of one variable
Part 3. The definite integral 

and its application
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Economic problems (Example 1)
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Economic problems (Example 1)
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Economic problems (Example 1)
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Economic problems (Example 2)



PhD Misiura Ie.Iu. 6

Economic problems (Example 2)
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Economic problems (Example 3)
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Economic problems (Example 4)
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Economic problems (Example 6)



Example 7. The laws of supply and demand have the form: 

a) Find the point of market equilibrium.

b) Find consumers’ benefit under the condition of 

establishment of market equilibrium.

c) Find suppliers’ benefit under the condition of 

establishment of market equilibrium.
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Economic problems (Example 7)



a) Find the point of market equilibrium.
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Economic problems (Example 7)



a) Find the point of market equilibrium.
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Economic problems (Example 7)



b) Find consumers’ benefit under the condition of 

establishment of market equilibrium.
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Economic problems (Example 7)



c) Find suppliers’ benefit under the condition of 

establishment of market equilibrium.

(units of money)
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Economic problems (Example 7)



Economic problems
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Economic problems
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Economic problems
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Economic problems
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1. Definite integral. 

Formula of Newton-Leibnitz

PhD Misiura Ie.Iu. 19



Let the function               be determined on the interval 

Let us divide the interval               into n subintervals by n points 

On each subinterval                 we choose some point  and compound

the sum 

where  

is the length of each interval.  
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The definite integral of the function on the interval

is called the limit

where a is the lower limit, b is the upper limit of integration. 

 f x  ,a b
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i i
max x i a

lim f x f x dx
  

  

 F xIf              is an antiderivative for a continuous function

on the interval          then the formula of Newton-Leibnitz is true
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Example 1. Calculate the definite integral:

Solution. 
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The basic properties of a definite integral:

1)

2)
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The basic properties of a definite integral:

3)       
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The basic properties of a definite integral:

1)

2)

3)

   
b а

a b

f x dx f x dx  
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4)         1 2 1 2

b b b
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f x f x dx f x dx f x dx    

5)                                                                where С is a constant   
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6) If functions and on the interval , where

satisfy the condition , then

7) Estimation of the definite integral. If m and M are the least and

the greatest values of the function on the interval

i.e. , then
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8) Theorem of the mean. If the function is continuous on

the interval , where , then there exists such

a value that
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9) , where is an odd function.

10) , where is an even function.
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2. Rules of definite integral calculation
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1) INTEGRATION BY PARTS

where                   and                    are continuous differential 

functions on the interval              and 
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Example 2. Calculate

1

0

xxe dx


Solution. Let’s use the method of integration by parts:

u x xdv e dx

then

du dx
x xv e dx e   

We obtain
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2) THE SUBSTITUTION OF A VARIABLE

where                         and                  are continuous functions on 

the interval            ,                        ,                      .                         

      
b
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f x dx f t t dt
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Example 3. Calculate 
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Solution. Let’s allocate the perfect square
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Let’s substitute

 
22 24 5 2 2 4 1 2 1.x x x x x         

2 , .x t dx dt  

Let’s change limits of integration:

if then                      ; 

if then

0,x 

1x 

2t 

3.t 
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HOMEWORK
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3. Application of definite integral for 

geometry problems.

Calculation of the area of a plane figure
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3. Application of definite integral for 

geometry problems.

Calculation of the area of a plane figure

If then is numerically equal to

the area of the curvilinear trapezoid with the base

bounded by the straight lines , ,

and the curve :
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If the curvilinear trapezoid is bounded by the straight lines , 

,  and the curve , 

then its area is 
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If  then the area, bounded by these curves and

the straight lines  and  equals

   xfxf 12 
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Example 4. Calculate the area of the figure bounded by 

the parabola  and the X-axis.24y x x 
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Solution. Find the limits of integration, i.e. the points of 

intersection of the given curve and X-axis (              ):0y

24 0x x 

 4 0x x 

0x  4x 

Let’s calculate the area of the figure by the formula:
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Example 5. Calculate the area of the figure bounded by 

curves                   and2 2y x  y x

x
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Solution. Find the limits of integration, i.e. the points of intersection
of given curves:
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Since                         then the area, bounded by these curves is 

defined by the formula:

   xfxf 12 
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Tasks for the test

Task 1. Calculate the area of the figure bounded by curves:

2y x
1

y
x

 3x  0y 

Task 2. Calculate the area of the figure bounded by curves:

24y x x  0y  5x 
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4. Application of definite integral for 

geometry problems. 

Calculation of the rotation solid volume
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If the curvilinear trapezoid bounded by the curve and

the straight lines , , , it is rotated

round the X-axis then the rotation solid volume can be obtained

by the formula:
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2
b

y
a

V xydx 

If the curvilinear trapezoid bounded by the curve and

the straight lines , , , it is rotated

round the Y-axis then the rotation solid volume can be obtained

by the formula:

 y f x

x a x b 0y 
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Example. Calculate a solid volume obtained by the

figure rotation round the X-axis bounded by the lines:

2 2y x 3x 
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If a figure is bounded by the curves and

and the straight lines , ,

it is rotated round the X-axis then the rotation solid volume is

x a x b
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If a figure is bounded by the curves and

and the straight lines , ,

it is rotated round the Y-axis then the rotation solid volume is

 1 1x y  2 2x y
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Application of 

a definite integral for 

economic problems

PhD Misiura Ie.Iu. 62



Problem 1. Let the function describe the

changing of the productivity of an enterprise under the

time t. Then the volume of production V produced by the

time is defined by the formula:

 tfz 

 21, tt

 dttfV

t

t
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Problem 1. Determine the volume of production V

produced by an employee over the second working hour

if the productivity is defined by the function:
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Problem 1. Determine the volume of production V

produced by an employee over the second working

hour if the productivity is defined by the function:

  3
43

2





t
tf

The second working hour is the time from the first to the

second hour.
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Solution. The volume of production V is defined by the

formula:

 dttfV
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Tasks
Task 1.1. Let the function of the productivity have the form:

(details per an hour), 

where is a time segment from the beginning of a day.

Determine the quantity of the details which are produced by

an employee over the first working hour and the second

working hour and. Find the mean value of the quantity of

the details which are produced by an employee during a

working day (8 hours). Make an analysis of the obtained

values in the problem.

  96,20089,00033,0 2  tttf
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Tasks
Task 1.2. Let the function of the productivity have the form:

(details per an hour), 

where is a time segment from the beginning of a day.

Determine the quantity of the details which are produced by

an employee over the first working hour and the second

working hour and. Find the mean value of the quantity of

the details which are produced by an employee during a

working day (8 hours). Make an analysis of the obtained

values in the problem.

  ttf 10100
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Problem 2. Find the mean value of the inputs

expressed in units of money, if the volume of production

changes from 0 to 3 units. Indicate the volume of

production, under which the inputs take on the mean

value.

  143 2  xxxK
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Solution. Let’s apply the mean value theorem:
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The mean value of the inputs equals 16, i.e.

Let’s define the volume of production, under which the

inputs take on the mean value, i.e. solve the equation:

  16cK

  16cK

16143 2  сс

01543 2  сс
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Let's find the discriminant and roots of this quadratic

equation:

01543 2  сс

196D 31 с
3

5
2 с
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Let's find the discriminant and roots of this quadratic

equation:

01543 2  сс

196D 31 с
3

5
2 с

This root is not the value of the volume of

production, because it is less than 0. Therefore c equals

i.e. units of production.
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TASKS

Task 2.1. Find the mean value of the inputs

expressed in units of money, if the volume of production

changes from 0 to 3 units. Indicate the volume of

production, under which the inputs take on the mean value.
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Problem 3. The laws of supply and demand have the form: 

a) Find the point of market equilibrium.

b) Find consumers’ benefit under the condition of 

establishment of market equilibrium.

c) Find suppliers’ benefit under the condition of 

establishment of market equilibrium.
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a) Find the point of market equilibrium.
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a) Find the point of market equilibrium.
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b) Find consumers’ benefit under the condition of 

establishment of market equilibrium.
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c) Find suppliers’ benefit under the condition of 

establishment of market equilibrium.

(units of money)
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TASKS

Task 3.1. The laws of supply and demand have the form: 

a) Find the point of market equilibrium.

b) Find consumers’ benefit under the condition of 
establishment of market equilibrium.

c) Find suppliers’ benefit under the condition of 
establishment of market equilibrium.
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