TASKS

TASK 1. Define the length of side AB for the triangle with apexes A(3;-2), B(-1;5), C(0;6).

The distance between two points A and B	
or the length of the segment AB is	$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$
calculated according to the following formula:	

TASK 2. What is the midpoint M of the straight line segment AB joining the points A(3;-2), B(-1;5)?

TASK 3. Form the equation of a straight line passing through two points $M_1(7,-1)$ and $M_2(2,5)$.

TASK 4. Transform the obtained equation of a straight line (see TASK 3) to the next form:

General equation of	$A_{22} + B_{22} + C = 0$	if $A^2 + B^2 \neq 0$
a straight line	Ax + By + C = 0,	$\text{II } A + B \neq 0$

TASK 5. Find the distance from the point $M_0(4,3)$ to the given straight line (see TASK 4).

TASK 6a. Transform the obtained equation of a straight line (see TASK 2) to the next form:

TASK 6b. Calculate the area of the obtained right triangle forming between the coordinate axes and the straight line.

TASK 6c. Plot the graph of the obtained equation of a straight line (see TASK 6a).

TASK 7. Transform the obtained equation of a straight line (see TASK 4) to the next form:

TASK 8. Form the equation of a straight line passing through point M(1,-3) with the angular coefficient k = 5.

TASK 9. Form the equation of a straight line through the point M(1,-3) *parallel* to the straight line y = 2x+1.

Geometric relationship of two		
straight lines:		
1) $y = k_1 x + b_1 (l_1)$	if $l_1 l_2$, then $k_2 = k_1$	
2) $y = k_2 x + b_2 (l_2)$		
Equation of a straight line	$y - y_0 = k \cdot (x - x_0),$	1 v /1
passing through the point	$y - y_0 - \kappa (x - x_0),$	
$M_0(x_0, y_0)$ and forming the		
angle φ with the Ox-axis (or	where $k = tg\varphi$,	
with an angular coefficient k)	$0 \le \varphi \le \pi$	

TASK 10. Form the equation of a straight line through the point M(1,-3) *perpendicular* to the straight line y = 2x + 1.

Geometric relationship of two straight lines: 1) $y = k_1 x + b_1 (l_1)$	if $l_1 \perp l_2$, then $k_1 k_2 = -1$	
2) $y = k_2 x + b_2 (l_2)$ Equation of a straight line passing through the point $M_0(x_0, y_0)$ and forming the angle φ with the Ox -axis (or with an angular	$y - y_0 = k \cdot (x - x_0),$ where $k = tg\varphi,$ $0 \le \varphi \le \pi$	φ
coefficient k)		

3

TASK 11. Finding Equilibrium point using Linear Demand and Supply Equations: $Q_d = 100-3p$ and $Q_s = 2p+20$.

https://www.youtube.com/watch?v=vUyRQ066tw0

Figure. Supply and Demand Graph. The equations for Qd and Qs are displayed graphically by the sloped lines.

TASK 12. Calculate the intersection point of two straight lines: 2x - 7y - 15 = 0 and 9x - 4y + 15 = 0.