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Theme: Random variables
and thelr economic
Interpretation.
Basic laws of distribution
Part 1: discrete random
variable



A definition of random variables
and their classification

A variable i1s called random, if it can receive
real values with definite probabilities as a
result of experiment.

S— A random variable / BunagkoBa Benu4mnHa
/‘i )
¢
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A definition of random variables
and their classification

A variable i1s called random, if it can receive
real values with definite probabilities as a
result of experiment.

Definition

A random variable is a variable that takes values according to a certain
probability distribution.

@ Keys to know:

» All the possible values it can take.

» The probability distribution according to which it takes all possible
values.
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A definition of random variables
and their classification

A variable is called random, If It can receive

real values with definite probabilities as a
result of experiment.

In general, random variables can be
discrete or continuous.
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A discrete random variable /
AVUCKpeTHa BMNaaKoBa BeriMymHa

A continuous random variable /
HenepepBHa BUNaaKoBa BesiIM4MHA
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A definition of random variables
and their classification

A random variable Is a variable whose value
IS unknown, or a function that assigns
values to each of an experiment's
outcomes. Random variables are often
designated by letters and can be classified
as discrete, which are variables that have
separated values, or continuous, which are
variables that can have any values within a
continuous range.
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https://www.investopedia.com/terms/d/discrete-distribution.asp

A random variable is denoted by X,Y,Z

and so on and its possible values are
denoted by X;, Yi, Z;

For example, if X is a random variable,

then its values are  Xxy,x,, ,x, (these

values form a complete group of events,

2

therefore

N
2. b =1
i1
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DISCRETE RANDOM VARIABLE

The random variable X Is called discrete, if
such non-negative function exists

L n
P(X=x)=p =1 2. Pi =1
-1

which determines the correspondence bet-
ween the value X; of the variable X and
the probability ', that X receives this
value. P
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A discrete variable Is a variable whose value Is
obtained by counting.

Examples: number of students present

number of red marbles in a jar

number of heads when
flipping three coins

students’ grade level
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Random Variables

According to the range of a random variable, we can define two types of
random variables.

@ Discrete random variables:
» The range is finite or countably infinite.!
(1) The number of defective light bulbs in a box of ten (finite)
(2) The number of tails until the first heads comes up (countably infinite)
@ Continuous random variables:
» The range is uncountable (any value in an interval)

(1) Consider the experiment where a light bulb is tested until failure, and
let X denote the time to failure.

Range of X = [0. x)

*A set of elements is countably infinite if the elements in the set can be put into
one-to-one correspondence with the positive integers. o -
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DISTRIBUTION LAW

The distribution law (row) of a random
variable Is called a set of all its possible
values and probabilities which these
values possess. It's often written In the
form of a table

- A distribution law (row) /
\ é 3aKOH po3nodiny
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DISTRIBUTION LAW OF

A DISCRETE RANDOM VARIABLE

The distribution law (row) of a discrete
random variable Is called a set of all its
possible values and probabilities which

these values possess. It's often written In
the form of a table

X

X1

X2

Xn

Pi

P1

P2

Pn
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Example: Flip a Fair Coin Twice
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Example: Flip a Fair Coin Twice

@ The sample space is

Q= {HH HT,TH.,TT)}
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Example: Flip a Fair Coin Twice

@ [he sample space is
Q={HH HT,TH,TT}

e Let X be the number of heads.
» The range of X is {0.1,2}
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Example: Flip a Fair Coin Twice

@ The sample space is
Q={HH HT, TH.TT}

o Let X be the number of heads.
» The range of X is {0.1,2}

e For example,

=P({HT} +P({TH})
11 1
= TR
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Example. Two Dballs are drawn In
succession without replacement from an
urn containing 4 red balls and 3 black
balls. Construct a distribution law.
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Example. Two Dballs are drawn In
succession without replacement from an
urn containing 4 red balls and 3 black
balls. Construct a distribution law.

Solution.
Let’'s denote X as the number of red balls.
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Example. Two Dballs are drawn In
succession without replacement from an
urn containing 4 red balls and 3 black
balls. Construct a distribution law.

Solution.
Let’'s denote X as the number of red balls.

HOW MANY OUTCOMES ARE
POSSIBLE?
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X IS the number of red balls

RB

BR

BB
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X IS the number of red balls

RB 1
BR 1
BB 0
PhD Misiura le.u. (AoueHT 21
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Let’s find the probability of each value X;

32 1
P(X =0)= P(BB):?-E:?
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Let’s find the probability of each value X;

P(X =0)= P(BB):%%:%
P(X =1)=P(RB +BR)=

4 _4
7 7

3,34_2.2_
6 76 7 7
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Let’s find the probability of each value X;

P(X =0)= P(BB):%%:%
P(X =1)=P(RB +BR)=

4. _4
7 7

3,34_2,2_
6 76 7 7

P(X =2)= P(RR):g

3.2
6 7
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Let’s write the distribution law of this discrete
random variable:

Xi 0
v | L
| 7
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Distribution law (row) can be graphically plotted. Values
of a variable are marked on x-axis, the corresponding
probabilities are marked on p-axis. The obtained points
are connected with the help of segments. It results in a

distribution polygon (6azamokymHuk po3nodiny).
p

g | P, +
\ & |
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Example. Distribution law of a discrete random variable X

X

-2

2

6

10

14

Pi

0.05

0.16

0.35

0.31

0.13

IS given. Draw a distribution polygon.
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Example. Distribution law of a discrete random variable X

X

-2

2

6

10

14

Pi

0.05

0.16

0.35

0.31

0.13

IS given. Draw a distribution polygon.
Solution. Let’s plot the distribution polygon for the given
distribution law.
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X -2 2 6 10 14
P 0.05 | 0.16 | 0.35 | 0.31 | 0.13

Solution. Let’s plot the distribution polygon for the given
P
distribution law.

>

0.4+

0.351
0.31

2 L

f f f f f f f > X
2 4 6 8 10 12 14
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A discrete random variable

characterized by one function:

a distribution function of probabilities

F(x)
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The distribution function
The probability of the fact that a random

variable X receives a value less than X,
IS called a cumulative distribution

function of a random variable X and is
marked as F(X) :

F(x)=P(X < x)

PhD Misiura le.lu. (aoueHT 31
Mictopa €.10.)



General properties of
the cumulative distribution function:

1. F(X) is a bounded function, i.e. 0 < F(x)gl
2. F(X) IS a non-decreasing function for X e (— o0, oo)
3. lim F(x)=F(-o)=0

X—>—00
4 lim F(x)=F(+0)=1

" X—>+00
5. The probability that a random variable X lies in

the interval (x;,x,) IS equal to the increment of its

cumulative distribution function on this interval, 1.e.
P(X < X <Xp)=F(%y)—F(x)
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The distribution function

EET P I T
B 7 I T

0, Xex,
B, N EX<xm,
F{x}-#ﬂ+ﬁz' Xo & X< X3,
Pl+ o+ o+ Py, Xyp=l S X <X,
L XE Xy
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Example. Find the distribution function of
the random variable X , which is defined by
the distribution law:

X 1 2 3 4
Pi 0.7 0.21 0.063 0.027

Find the probability that the random variable

X possesses a value less than 1 and
more than 4.
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X

1

2

3

A

Pi

0.7

0.21 0.063

0.027

The distribution cumulative function is

F(x)=

Z

0
0.7,

1

L2

if x<1

2

if x>4
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The distribution cumulative function iIs
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1‘&':(") EEp—
0, if x<l1 18!
07, iflsx<2 | —
091, if 2<x<3
0973.if 3<x<4 4
T 1 2 3 4 5
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Let’'s find the probability that a random variable
possesses a value less than 1 and more than 4,
l.e. .

P(x; < X <xp)=F(x2)-F(x)

Pl<X <4)=F(4)-F(1)=1-0.7=0.3

0, if x<l1
0.7, if1<x<2
F(x)=4091 if2<x<3
0.973,if 3<x <4
1, if x>4
PhD Misiura le.lu. (qoueHT 37
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Numerical
characteristics of
discrete random

variables
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The numerical characteristics
of discrete random variables

The mathematical expectation of a discrete
random variable X is called a sum of products
of possible values X; , which a variable X is
taken, and their corresponding probabilities p; .

N
M(X)=D % - Pj =Xg - Pp +Xo - Po +..+ X, - Ppy
1=1
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The numerical characteristics
of distribution

The variance of a random variable Is called a
mathematical expectation of deviation square of a

random variable X from its mathematical
expectation M (X) ,i.e..

D(X) = M|(X =M (X)) ]= 3 (x - M (X))? -

1=1
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The numerical characteristics

of distribution

or variance of a random variable X equals a
mathematical expectation of its sguare minus a
square of its mathematical expectation M (X)

l.e.:
D(X)=M(X?)=[M(X)J?
where

M (X °) =anxi2 - P;
i=1

PhD Misiura le.lu. (aoueHT 41
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The numerical characteristics
of arandom variable

Root-mean-square deviation
deviation) of a random variable X
root of its variance D(X ) , i.e.:

o(X)=+/D(X)

PhD Misiura le.lu. (aoueHT
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4. Coefficient of variation is a ratio of a root-
mean-square deviation and a mathematical
expectation in percent:

a(X)
M(X)

v(X)= .100 %

Coefficient of variation gives a possibility to
compare a level of dispersion of values which
have different character.

PhD Misiura le.lu. (aoueHT
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5. Mode

A mode M, of a discrete random variable
Is the value of X that is most likely to
occur. Consequently, the mode is equal to
the value of x at which the probability

distribution function reaches a maximum
P(M,)
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6. Median

A median m, of a discrete random
variable 1s the "middle” value. It Is the
value of X for which P(X <x) is greater
than or equal to 0.5 and P(X>x) s

greater than or equal to 0.5.
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7. Initial moments

The k-th moment satisfies the relation

v =M(x¥]
Vk%ixik Pi
1=1

PhD Misiura le.lu. (aoueHT
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7. Initial moments
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8. Central moments

The k-th central moment satisfies the

relation:
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8. Central moments
=M (X =M (x)))
py =0

#o =D(X)
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EXAMPLE (DRV)

Distribution of the discrete random variable X is

given:

P

0,4

0,3

0,3
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EXAMPLE (DRV)

Distribution of the discrete random variable X is

given:

P

0,4

0,3

0,3

Find all numerical characteristics.
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EXAMPLE (DRV)

X

1

2

3

Pi

0,4

0,3

0,3

1. The mathematical expectation:

M(X):X1p1+X2 p2 +X3p3 :1'0,4+2°O,3+3'O,3:1,9

PhD Misiura le.lu. (aoueHT
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EXAMPLE (DRV)

X 1 2 3

pi | 04 | 03 | 0,3

2. The variance:

D(X)=(x =M (X)) py+ (g = M(X))* 2 +(x3 = M(X))* p3 =

PhD Misiura le.lu. (aoueHT
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EXAMPLE (DRV)

X 1 2 3

pi | 04 | 03 | 03

2. The variance:
D(X )= (x, =M (X)) py +(xp =M (X))* p + (% =M (X))’ pg =

=(1-19)Y -0,4+(2-19)-0,3+(3-19)*-0,3~ 0,69
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EXAMPLE (DRV)

X 1 2 3

pi | 04 | 03 | 03

2. The variance:

D(X)=x2py + X5 Py + X2 p3 —(M(X))* =1-0,4 +4-0,3+9-0,3-1,92 = 0,69

PhD Misiura le.lu. (aoueHT 56
Mictopa €.10.)



EXAMPLE (DRV)

X 1 2 3

pi | 04 | 03 | 0,3

3. The root-mean-square deviation:

o(X)=./D(X)=4/0,69 ~ 0,84

PhD Misiura le.lu. (aoueHT
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EXAMPLE (DRV)

X 1 2 3

pi | 04 | 03 | 03

4. The mode:

M,=1 (max p; =04)

PhD Misiura le.lu. (aoueHT
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EXAMPLE (DRV)

X 1 2 3
o | 04 | 03 | 03
5. The median:
1111222333 _nt
WMe ~° ] —

PhD Misiura le.lu. (aoueHT

Mictopa €.10.)
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EXAMPLE (DRV)

Xj 1 2 3

pi | 04 | 03 | 03

6. The coefficient of variation:

v(X):m-loo%

)= 084
19

PhD Misiura le.lu. (aoueHT
Mictopa €.10.)
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EXAMPLE (DRV)

X 1 2 3

pi | 04 | 03 | 03

7. The initial moment:
A=M) v =m(x?)
V1 :1,9 Vo = 4,3

PhD Misiura le.lu. (aoueHT
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EXAMPLE (DRV)

X 1 2 3

pi | 04 | 03 | 0,3

8. The central moment:
=0 to =D(X)
=0 1> =0,69

PhD Misiura le.lu. (aoueHT
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Basic distribution laws of
discrete random
distributions
and their numerical
characteristics
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Binomial distribution law

A random variable X has the binomial
distribution with parameters (n, p) if

Py (x=k)=Cqp g™
k=0,1...n

where

0<p<l q=1-p n>1
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Binomial distribution law
k -k .n—k
P.(x=k)=C,p“q"

The numerical characteristics are
given by the formulas:

M(X)=np D(X) =npg
o(X) =+/npq

PhD Misiura le.lu. (aoueHT 65
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Binomial distribution law

0 1

n-—-1

P

a" | Cypgq™

Ch

-1 pn—lq
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Example. The probability of passing an
exam excellently for each of three
students (a 5-point system) equals 0.4.
Make up a distribution law of a number of
excellent marks which are got by the
students at the exam. Find a mathematical
expectation, a variance and a root-mean
square deviation of a discrete random
variable.

PhD Misiura le.lu. (aoueHT
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Solution. Let a discrete random variable be a
number of students with the mark “5" (a 5-point
system). It has such possible values:

X, =0

(no student passed the exam with the mark “57);
X2 — 1

(one student passed the exam with the mark “5”);
X3 — 2

(two students passed the exam with the mark “5%);
Xq =3

(three students passed the exam with the mark “57).
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X]_:O

P3(0)=C3p°g™ "

X2 — 1
Py(L)=C3p'a

=1-1.9° =0.6° =0.216

=3.-p-0%>=3-0.4-0.6°=0.432
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X3:2

P,(2)=C2p2q*2=3.p%.q=3-0.42.0.6=0.288
X4 — 3
P(3)=C3p%g* 2 =1-p*-q° =1.0.4°-1=0.064

PhD Misiura le.lu. (aoueHT
Mictopa €.10.)
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0.216

0.432

0.288

0.064
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0 1 2 3

0.2160.432]0.288 | 0.064

Distribution law

05

0,45

04 N

0,35 Hhﬁﬂxhﬂ“uhhh
03
025
02
0,15

0,1 \\

0,05

0 0,5 1 15 2 25 3 32
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0 1 2 3

0.2160.432]0.288 | 0.064

Distribution law

05 M
045 0

04 N

0,35 \
03
025
02
0,15

0,1 \\

0,05

0 0,5 1 15 2 25 3 32
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Numerical characteristics
n=3 p=04 q=1-p=0.6

M (X)=np=3-0.4=1.2

D(X)=npg=3-0.4-0.6=0.72

o(X)=4npg=+0.72 ~0.85
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Poisson distribution law

A random variable X has the Poisson dis-
tribution with parameters A (1> 0) if

K .—1
Ae
P (x=k)=
K|
where 0O<p<l
g=1-p k=0,12,...
A= np PhD Misiura le.lu. !)u,:er-llz k 75
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Poisson distribution law
_ 0
PLI. (p—0)
k! g=1-p—>1l

The numerical characteristics are
given by the formulas:

M(X)=np=A4 D(X)=npq~A
o(X) =/npg =~/4

PhD Misiura le.lu. (aoueHT 76
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Poisson distribution law

X; 0 1 2 n
2,4 n.—A1

i | ot | joA A€ e
2! n!
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Example. The probability of finding a
mistake on a book page is equal to 0.004.
500 pages are checked. Make up a
distribution law of a number of finding a
mistake on a book page. Find a
mathematical expectation, a variance and
a root-mean square deviation of a discrete
random variable.
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Example. The probability of finding a mistake on a
book page is equal to 0.004. 500 pages are checked.
Make up a distribution law of a number of finding a
mistake on a book page. Find a mathematical
expectation, a variance and a root-mean square
deviation of a discrete random variable.

Solution. Let X be a number of finding a mistake on a
book page, then the possible values of are 0, 1, 2, 3,
..., 900. Here

p=0.004
A =500-0.004=2
n =500

PhD Misiura le.lu. (aoueHT 79
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P.go(x=0)= ~0.13534
1 -2
Poo(x=1)= 2 l‘f ~0.27067
2 2
P (x=2)=2 2? ~0.27067

PhD Misiura le.lu. (aoueHT
Mictopa €.10.)

80



Pooo(X=3)= a S 0.18045
4 _ -2

P (x = 4) =2 4? ~0.09022
5 -2

Poo(x=5)=2 " ~0.03609

PhD Misiura le.lu. (aoueHT
Mictopa €.10.)
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Poog(X=6)= é ~0.01203

P (X =7)= '7| ~0.00344
8 -2
P (x =8)= 2 8? ~0.00086

PhD Misiura le.lu. (aoueHT
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At

29.e7°
P.oo(Xx=9)= oS 0.00019

710 o2

P.oo(x=10) = ~0.00004

101

k>11 we have that

PhD Misiura le.lu. (aoueHT
Mictopa €.10.)

Pogo(x>11)~ 0

83



Xj | O 1 2 3 4 5
pl 0.13534 | 0.27067 | 0.27067 | 0.18045 | 0.09022 | 0.03609
Xj | 6 7 8 9 | 10

pl 0.01203 | 0.00344 | 0.00086 | 0.00019 | 0.00004

PhD Misiura le.lu. (aoueHT

Mictopa €.10.)
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Let's find the numerical characteristics
by the formulas:

M(X)=A=2
D(X)~A=2

o(X)=~/1=+/2~1.41421

PhD Misiura le.lu. (aoueHT 85
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INDEPENDENT WORK
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Mictopa €.10.)

86



Geometric distribution law

A random variable X has a geometric
distribution with parameters (n, p) If

Pn(x — k): qu

O<p<l k=0,12,..
g=1-p n>1
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Geometric distribution law

P A
0.61
0.4+
0.2
0 ﬂ | " = -
0 I 2 3 4 5 6 k
p=0.55 N=0
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Geometric distribution law

Pn(x — k): qu

The numerical characteristics can be

calculated by the formulas
I\/|(><)=1_—°—— D(X)_1 P _ 4
P P

o(X) = \/7

PhD Misiura le.lu. (aoueHT 89
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Example

A doctor Is seeking an anti-depressant for a
newly diagnosed patient. Suppose that, of the
available anti-depressant drugs, the probability
that any particular drug will be effective for a
particular patient is p=0.6. What is the probability
that the first drug found to be effective for this
patient is the first drug tried, the second drug
tried, and so on? What is the expected number of
drugs that will be tried to find one that is
effective?
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Example

Consider the anti-depressant example above.

The probability that any given drug is effective
(success) is p=0.6.

The probability that a drug will not be effective
(fal)isg=1-p=1-0.6 =0.4.

Here are probabilities of some possible
outcomes.
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Example

(a) The first drug works. There are zero
failures before the first success. Y = 0 failures.
The probability p (zero failures before first
success) Is simply the probability that the first
drug works.

P(Y=0)=¢"p =04"%06=1%0.6=0.6.
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Example

(b) The first drug fails, but the second drug
works. There iIs one failure before the first
success. Y=1 failure. The probablility for this
sequence of events iIs p(first drug fails) *
p(second drug Is success) which is given by

P(Y=1)=¢'p =04"%06=04%0.6=0.24.
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Example

(c) The first drug falls, the second drug falls,
out the third drug works. There are two failures
pefore the first success. Y= 2 failures. The
probabillity for this sequence of events is p(first
drug fails) * p(second drug fails) *p(third drug is
success)

P(Y=2)=¢p,=04"%0.6=0.096.
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Example

The general formula to calculate the probability of
k failures before the first success, where the
probability of success is p and the probability of
fallureisg=1-p,Is

P(Y=FK)=q"p.

fork=0,1, 2, 3, ....
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TASK

A representative from the
National Football League's
Marketing Division
randomly selects people
on a random street In
Kansas City, Kansas until @
he finds a person who E&
attended the Ilast home
football game. Let p, the
probability that he
succeeds in finding such a
person, equal 0.20. And,
let X denote the number of
people he selects until he
finds his first success.

PhD Misiura le.lu. (aoueHT 96
Mictopa €.10.)



TASK

A representative from the National Football League's Marketing
Division randomly selects people on a random street in Kansas
City, Kansas until he finds a person who attended the last home
football game. Let p, the probability that he succeeds in finding
such a person, equal 0.20. And, let X denote the number of
people he selects until he finds his first success.

(a) What is the probability that the marketing representative must
select 4 people before he finds one who attended the last home
football game?

(b) What is the probability that the marketing representative must
select more than 6 people before he finds one who attended the
last home football game?

(c) How many people should we expect (that is, what is the
average number) the marketing representative needs to select
before he finds one who attended the last home football game?
And, while we're at it, what is the variance?
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TASK

(a) What is the probability that the marketing representative
must select 4 people before he finds one who attended the
last home football game?
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TASK

(b) What is the probability that the marketing representative
must select more than 6 people before he finds one who
attended the last home football game?
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TASK

(c) How many people should we expect (that is, what is the
average number) the marketing representative needs to
select before he finds one who attended the last home
football game? And, while we're at it, what is the variance?

100
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Example

A doctor Is seeking an anti-depressant for a
newly diagnosed patient. Suppose that, of the
available anti-depressant drugs, the probability
that any particular drug will be effective for a
particular patient is p=0.6. What is the probability
that the first drug found to be effective for this
patient is the first drug tried, the second drug
tried, and so on? What is the expected number of
drugs that will be tried to find one that is
effective?
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Geometric distribution law

Pn(x — k): qu

The geometric distribution describes a
random variable X equal to the number of
fallures before the first success In a
sequence of Bernoulli trials with probability
p of success in each trial.
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Hypergeometric distribution law

A random variable has the hypergeometric
distribution with parameters (N, p, n) if

k n—k
Cnp Cng
Cn
O<pxl k=0,1...,n

g=1-p 0<n<N
N >0
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P.(x=k)=




Hypergeometric distribution law

If n<< N (in practice, n <0,IN ), then

Kk n—k
ChpCNg™ K ok gn-k

p “p“q

ot

e., the hypergeometric distribution tends to the
binomial distribution.
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Hypergeometric distribution law

PA
0.4¢
0.2
()+—8 0
0 I 2 3 4 k
p=05 N =10 n=4
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Hypergeometric distribution law

K n—Kk
Cnn C
P (x=k)=—2P an
CN
The numerical characteristics are given by the
formulas
D(X)= " "h
M(X)=np ~ N 1 P4

00— [N
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Hypergeometric distribution law

Ck Cn—k
P.(x=k)= N'z:an
N

A typical scheme Iin which the hypergeometric
distribution arises is as follows: n elements are
randomly drawn without replacement from a
population of N elements containing exactly Np
elements of type | and Ng elements of type Il. The
number of elements of type | in the sample iIs
described by the hypergeometric distribution.
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Example

A crate contains 50 light bulbs of which 5 are
defective and 45 are not. A Quality Control
Inspector randomly samples 4 bulbs without
replacement. Let X = the number of
defective bulbs selected. Make up the
distribution law of the discrete random
variable X.
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TASK 1

Suppose we randomly select 5 cards without
replacement from an ordinary deck of
playing cards. What Is the probability of
getting exactly 2 red cards (i.e., hearts or
diamonds)?
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TASK 1

Suppose we randomly select 5 cards without replacement
from an ordinary deck of playing cards. What is the
probability of getting exactly 2 red cards (i.e., hearts or
diamonds)?

Solution. This is a hypergeometric experiment in which we
know the following:

N = 52; since there are 52 cards in a deck.

k = 26; since there are 26 red cards in a deck.

n = 5; since we randomly select 5 cards from the deck.
X = 2; since 2 of the cards we select are red.
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TASK 2

A box of 20 marbles contains 15 blue and 5
red. You need to draw a lot of 10 marbles at

random. Find the probability of drawing 6
blue marbles in the lot drawn.
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TASK 3

Automobiles arrive in a dealership In
lots of 10. Five out of each 10 are inspected.
For one lot, It Is know that 2 out of 10 do not
meet prescribed safety standards.

What Is probabillity that at least 1 out of
the 5 tested from that lot will be found not
meeting safety standards?
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TASK 4

Suppose we select 5 cards from an ordinary deck
of playing cards. What is the probability of
obtaining 2 or fewer hearts?

Solution: This Is a hypergeometric experiment in
which we know the following:

N = 52: since there are 52 cards Iin a deck.
k = 13: since there are 13 hearts in a deck.

n = 5; since we randomly select 5 cards from the
deck.

X = 0 to 2; since our selection includes 0O, 1, or 2
hearts.
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Thank You for your
time and attention!
Hope this
presentation was
educational and
helpful to you

©
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