
Programming technologies
Pandas

Pandas library

Pandas is a high-level Python library for data analysis. Why do I call it high-level,
because it is built on top of the lower-level NumPy library (written in C), which is a
big plus in performance. In the Python ecosystem, pandas is the most advanced
and fastest growing data science library.

import pandas as pd

2

Data structures of Pandas

DataFrame

Series

3

a = [1, 7, 2]
srs = pd.Series(a, index=["x",
"y", "z"])
print(srs)

mydataset = {
 'model': ["Tesla Model Y", "Toyota Corolla", "Toyota RAV4",
 "Ford F-Series", "Honda CR-V"],
 'number_of_sales': [1.15, 1.13, 0.93, 0.9, 0.72]
}
df = pd.DataFrame(mydataset)
print(df)

Series

The Series structure/object is an object similar to a one-dimensional array (Python
list, for example), but its distinctive feature is the presence of associated labels,
the so-called. indexes along each element from the list. This feature makes it an
associative array or dictionary in Python.

4

import pandas as pd

my_series = pd.Series([5, 6, 7, 8, 9, 10])
print(my_series)

Series

In the string representation of a Series object, the index is on the left and the
element itself is on the right. If the index is not explicitly given, then pandas
automatically creates a RangeIndex from 0 to N-1, where N is the total number of
elements. It is also worth noting that Series has a type of stored elements, in our
case it is int64, because we passed integer values.

The Series object has attributes through which you can get a list of elements and
indexes, these are values and index, respectively.

my_series.index
my_series.values

5

Indexes

Access to the elements of a Series object is possible by their index (remember the
analogy with a dictionary and access by key).

my_series[4] # will return 9

Indexes can be set explicitly:

my_series2 = pd.Series([5, 6, 7, 8, 9, 10], index=['a', 'b', 'c', 'd', 'e', 'f'])
print(my_series2['f']) # will print 10

6

Indexes

Select across multiple indexes and perform group assignment:

my_series2[['a', 'b', 'f']]

my_series2[['a', 'b', 'f']] = 0

7

Filtering + Math operations

my_series2[my_series2 > 0]

my_series2[my_series2 > 0] * 2

8

Series from dict() object
my_series3 = pd.Series({'a': 5, 'b': 6, 'c': 7, 'd': 8})

print(my_series3)

print('d' in my_series3)

9

Name of series and index

The Series object and its index have a name attribute, which gives the name of
the object and index, respectively.
my_series3.name = 'numbers'

my_series3.index.name = 'letters'

print(my_series3)

my_series3.index = ['A', 'B', 'C', 'D']

print(my_series3)

Keep in mind that the indexed list must be the same length as the number of
elements in the Series.

10

DataFrame

The DataFrame object is best thought of as a regular table, and rightly so,
because the DataFrame is a tabular data structure. Any table always has rows and
columns. The columns in a DataFrame object are Series objects, the rows of
which are their immediate elements.

The easiest way to construct a DataFrame is using a Python dictionary as an
example:
df = pd.DataFrame({
 'country': ['United Kingdom', 'United States', 'Canada', 'Ukraine'],
 'population': [60.6, 298.4, 33.1, 46.7],
 'square': [244820, 9631420, 9984670, 603700]
})
print(df)

11

Series in Dataframe

The column in the DataFrame is Series.

print(df['country'])

print(type(df['country']))

12

DataFrame Indexes

The DataFrame object has 2 indexes: on rows and on columns. If the index on the
rows is not explicitly specified (for example, the column by which they need to be
built), then pandas sets an integer index RangeIndex from 0 to N-1, where N is the
number of rows in the table.

df.columns

df.index

13

Index defining

During defining of DataFrame:
df = pd.DataFrame({
 'country': ['United Kingdom', 'United States', 'Canada', 'Ukraine'],
 'population': [60.6, 298.4, 33.1, 46.7],
 'square': [244820, 9631420, 9984670, 603700]
}, index=['UK', 'US', 'CA', 'UA'])
print(df)

Define after Dataframe creation + define the name:
df.index = ['UK', 'US', 'CA', 'UA']

df.index.name = 'Country Code'

14

Row(s) access

Rows can be accessed by index in several ways:

● .loc - used for access by string label
● .iloc - used to access by numeric value (starting from 0)

print(df.loc['UA'])

print(df.iloc[0])

15

Selection

print(df.loc[['UK', 'US'], 'population'])

print(df.loc['UK':'CA', :])

print(df[df.population > 50][['country', 'square']])

df.population # the same for df['population']

16

Operation

Pandas, when operating on a DataFrame, returns a new DataFrame object.

Let's add a new column in which we divide the population (in millions) by the area
of the country, thereby obtaining the density:

df['density'] = df['population'] / df['square'] * 1000000

df = df.drop(['density'], axis='columns') # del df['density']

df = df.rename(columns={'country':'Country',
 'population': 'Population',
 'square':'Square'})

17

Export / Import data

Pandas supports all the most popular data storage formats: csv, excel, sql, clipboard, html and much more:

Most often you have to work with csv files. For example, to save our DataFrame with countries, just write:

df.to_csv('filename.csv')

The to_csv function is also passed various arguments (for example, the separator character between columns),
about which you can find out more in the official documentation.

You can read data from a csv file and turn it into a DataFrame using the read_csv function.

df = pd.read_csv('filename.csv', sep=',')

The sep argument specifies the split columns. There are many more ways to create a DataFrame from various
sources, but the most commonly used are CSV, Excel and SQL. For example, using the read_sql function, pandas
can execute an SQL query and, based on the response from the database, generate the necessary DataFrame.

18

Grouping and aggregation in pandas

df = pd.read_csv('data/countries_of_the_world.csv')

print(df.groupby(['Region'])['Country'].count())

19

