
Programming technologies
Testing



Definition of Testing

Unit testing is a method for testing software that looks at the smallest testable pieces of 
code, called units, which are tested for correct operation. By doing unit testing, we can 
verify that each part of the code, including helper functions that may not be exposed to 
the user, works correctly and as intended.

The idea is that we are independently checking each small piece of our program to 
ensure that it works. This contrasts with regression and integration testing, which tests 
that the different parts of the program work well together and as intended.

Automated testing is the execution of your test plan (the parts of your application you 
want to test, the order in which you want to test them, and the expected responses) by a 
script instead of a human. Python already comes with a set of tools and libraries to help 
you create automated tests for your application.

2



Types of Testing

Unit Tests vs. Integration Tests

Think of how you might test the lights on a car. You would turn on the lights (known as the test 
step) and go outside the car or ask a friend to check that the lights are on (known as the test 
assertion). Testing multiple components is known as integration testing.

If you have a fancy modern car, it will tell you when your light bulbs have gone. It does this using 
a form of unit test.

A unit test is a smaller test, one that checks that a single component operates in the right way. A 
unit test helps you to isolate what is broken in your application and fix it faster.

You have just seen two types of tests:

● An integration test checks that components in your application operate with each other.
● A unit test checks a small component in your application.

3



Types of Testing

Scheme of direction indicators

Unit 
testing

Integration testing

4



Example 1

def get_area_rectangle(height, width):
    return height * width

if __name__ == "__main__":
    print(get_area_rectangle(3,2))
    print(get_area_rectangle(4,2))

def get_area_rectangle(height, width):
    return height * width

if __name__ == "__main__":
    assert get_area_rectangle(3, 2) == 6
    assert get_area_rectangle(4, 2) == 8, "Incorrect"
    #assert get_area_rectangle(4, 2) == 7, "Incorrect"

5



Example 2

# Password requirements:
# 8+ symbols
# 1 digit 
# 1 lower case char
# 1 upper case char
# If length of password less than 8 chars tnam return "To short" 
# If the password consists of only: digits, or lowercase chars, or uppercase chars - return 
"Weak"
# If password consist of symbols form 2/3 groups - return "Good"
# If password consist of symbols from each group - return "Excellent"

def get_password_level(password):
    pass
    
if __name__ == "__main__":
    assert get_password_level("123") == "To short", "To short"

6



Example

7

def get_password_level(password):
    if len(password) < 8:
        return "To short"
    elif all(ord(e) in range(48, 58) for e in password) \
    or all(ord(e) in range(65, 91) for e in password) \
    or all(ord(e) in range(97, 123) for e in password):
        return "Weak"
    elif any(ord(e) in range(48, 58) for e in password) \
    and any(ord(e) in range(65, 91) for e in password) \
    and any(ord(e) in range(97, 123) for e in password):
        return "Excellent"
    elif (any(ord(e) in range(48, 58) for e in password) and any(ord(e) in range(65, 91) for e in password)) \
    or (any(ord(e) in range(65, 91) for e in password) and any(ord(e) in range(97, 123) for e in password)) \
    or (any(ord(e) in range(97, 123) for e in password) and any(ord(e) in range(48, 58) for e in password)):
        return "Good"
    
if __name__ == "__main__":
    assert get_password_level("12qqWW") == "To short", "To short"
    assert get_password_level("123456") == "To short", "To short"
    assert get_password_level("qwerty") == "To short", "To short"
    assert get_password_level("ASDFGH") == "To short", "To short"
    assert get_password_level("12345678") == "Weak", "Weak"
    assert get_password_level("asdfghjk") == "Weak", "Weak"
    assert get_password_level("QWERTYUI") == "Weak", "Weak"
    assert get_password_level("QWERTqwer") == "Good", "Good"
    assert get_password_level("QWERT1234") == "Good", "Good"
    assert get_password_level("qwer1234") == "Good", "Good"
    assert get_password_level("qw1234RT") == "Excellent", "Excellent"



Example
def get_password_level(password):
    if len(password) < 8:
        return "To short"
    if password.isdigit() or (password.isalpha() and password.islower()) or (password.isalpha() and password.isupper()):
        return "Weak"
    if any(e.isdigit() for e in password) and any(e.isalpha() and e.isupper() for e in password) and any(e.isalpha() and e.islower() 
for e in password):
        return "Excellent"
    if (any(e.isdigit() for e in password) and any(e.isalpha() and e.isupper() for e in password)) \
            or (any(e.isdigit() for e in password) and any(e.isalpha() and e.islower() for e in password)) \
            or (any(e.isalpha() and e.islower() for e in password) and any(e.isalpha() and e.isupper() for e in password)):
        return "Good"

    
if __name__ == "__main__":
    assert get_password_level("123") == "To short", "To short passwort"
    assert get_password_level("wer") == "To short", "To short passwort"
    assert get_password_level("WERTY") == "To short", "To short passwort"
    assert get_password_level("werQWE") == "To short", "To short passwort"
    assert get_password_level("2wE") == "To short", "To short passwort"
    assert get_password_level("12345678") == "Weak", "To weak passwort"
    assert get_password_level("abcdefgh") == "Weak", "To weak passwort"
    assert get_password_level("ABCDEFGH") == "Weak", "To weak passwort"
    assert get_password_level("A1234567") == "Good", "Good passwort"
    assert get_password_level("a1234567") == "Good", "Good passwort"
    assert get_password_level("ABCDefgh") == "Good", "Good passwort"
    assert get_password_level("A12345678") == "Good", "Good passwort"
    assert get_password_level("ab1234567") == "Good", "Good passwort"
    assert get_password_level("ABCDefghI") == "Good", "Good passwort"
    assert get_password_level("123ABCdef") == "Excellent", "Excellent passwort"

8



Module unittest

unittest has been built into the Python standard library.

unittest requires that:

● You put your tests into classes as methods
● You use a series of special assertion methods in the unittest.TestCase class 

instead of the built-in assert statement

9



Example
import unittest
from get_password_level import get_password_level

class TestGetPasswordLevel(unittest.TestCase):
    
    def test_to_short(self):
        self.assertEqual(get_password_level("12qqWW"), "To short")
        self.assertEqual(get_password_level("123456"), "To short")
        self.assertEqual(get_password_level("qwerty"), "To short")
        self.assertEqual(get_password_level("ASDFGH"), "To short")

    def test_weak(self):
        self.assertEqual(get_password_level("12345678"), "Weak")
        self.assertEqual(get_password_level("asdfghjk"), "Weak")
        self.assertEqual(get_password_level("QWERTYUI"), "Weak")

    def test_good(self):
        self.assertEqual(get_password_level("QWERTqwer"), "Good")
        self.assertEqual(get_password_level("QWERT1234"), "Good")
        self.assertEqual(get_password_level("qwer1234"), "Good")

    def test_excellent(self):
        self.assertEqual(get_password_level("qw1234RT"), "Excellent")

if __name__ == "__main__":
    unittest.main() 10



Asserts types

11

Method Checks that New in

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a, b) a is b 3.1

assertIsNot(a, b) a is not b 3.1

assertIsNone(x) x is None 3.1

assertIsNotNone(x) x is not None 3.1

assertIn(a, b) a in b 3.1

assertNotIn(a, b) a not in b 3.1

assertIsInstance(a, b) isinstance(a, b) 3.2

assertNotIsInstance(a, b) not isinstance(a, b) 3.2

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNotEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertFalse
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIs
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsNot
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsNone
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsNotNone
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIn
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNotIn
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsInstance
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNotIsInstance


Asserts types

12

Method Checks that New in

assertRaises(exc, fun, *args, **kwds) fun(*args, **kwds) raises exc

assertRaisesRegex(exc, r, fun, *args, **kwds) fun(*args, **kwds) raises exc and the 
message matches regex r

3.1

assertWarns(warn, fun, *args, **kwds) fun(*args, **kwds) raises warn 3.2

assertWarnsRegex(warn, r, fun, *args, **kwds) fun(*args, **kwds) raises warn and the 
message matches regex r

3.2

assertLogs(logger, level) The with block logs on logger with minimum 
level

3.4

assertNoLogs(logger, level) The with block does not log on
logger with minimum level

3.10

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarns
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarnsRegex
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertLogs
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNoLogs


Example
from unittest import TestCase
from unittest import main

def division(a, b):
    if b == 0:
        raise ZeroDivisionError()
    if b == 2:
        raise ValueError()
    return a / b

class TestDivision(TestCase):

    def test_division_by_zero(self):
        with self.assertRaises(ZeroDivisionError) as e:
            division(1, 0)

    def test_division_by_2(self):
        with self.assertRaises(ValueError) as e:
            division(1, 2)

    def test_valid_value(self):
        self.assertEqual(division(3, 1), 3)
        self.assertEqual(division(9, 3), 3)
        self.assertNotEqual(division(9, 1), 8)

if __name__ == "__main__":
    main()

13



Useful links

https://realpython.com/python-testing/

https://machinelearningmastery.com/a-gentle-introduction-to-unit-testing-in-python/

 https://docs.python.org/3/library/unittest.html#test-cases

14

https://realpython.com/python-testing/
https://machinelearningmastery.com/a-gentle-introduction-to-unit-testing-in-python/
https://docs.python.org/3/library/unittest.html#test-cases

