Programming technologies
Testing

Definition of Testing

Unit testing is a method for testing software that looks at the smallest testable pieces of
code, called units, which are tested for correct operation. By doing unit testing, we can
verify that each part of the code, including helper functions that may not be exposed to
the user, works correctly and as intended.

The idea is that we are independently checking each small piece of our program to
ensure that it works. This contrasts with regression and integration testing, which tests
that the different parts of the program work well together and as intended.

Automated testing is the execution of your test plan (the parts of your application you
want to test, the order in which you want to test them, and the expected responses) by a
script instead of a human. Python already comes with a set of tools and libraries to help

you create automated tests for your application.

Types of Testing

Unit Tests vs. Integration Tests

Think of how you might test the lights on a car. You would turn on the lights (known as the test
step) and go outside the car or ask a friend to check that the lights are on (known as the test
assertion). Testing multiple components is known as integration testing.

If you have a fancy modern car, it will tell you when your light bulbs have gone. It does this using
a form of unit test.

A unit test is a smaller test, one that checks that a single component operates in the right way. A
unit test helps you to isolate what is broken in your application and fix it faster.

You have just seen two types of tests:

e An integration test checks that components in your application operate with each other.
e Aunit test checks a small component in your application.

Types of Testing

Unit
testing

Integration testing

Scheme of direction indicators

Example 1

def get area rectangle(height, width):

return height * width

if name == " main_ ":
print (get area rectangle(3,2))
print (get area rectangle(4,2))

def get area rectangle(height, width):

return height * width

if name == " main ":

assert get area rectangle (3, 2)
assert get area rectangle (4, 2)
#assert get area rectangle(4, 2)

6
8, "Incorrect"
= 7, "Incorrect"

Example 2

Password requirements:
8+ symbols

1 digit

1 lower case char

1 upper case char

S o S S o =

If length of password less than 8 chars tnam return "To short"

If the password consists of only: digits, or lowercase chars, or uppercase chars - return
"Weak"

If password consist of symbols form 2/3 groups - return "Good"

If password consist of symbols from each group - return "Excellent"

def get password level (password) :
pass

if name == " main_ ":
assert get password level ("123") == "To short", "To short"

Example

def get password level (password) :
if len(password) < 8:
return "To short"
elif all(ord(e) in range (48, 58) for e in password) \
or all(ord(e) in range (65, 91) for e in password) \
or all(ord(e) in range (97, 123) for e in password):
return "Weak"
elif any(ord(e) in range (48, 58) for e in password) \
and any(ord(e) in range (65, 91) for e in password) \
and any(ord(e) in range (97, 123) for e in password) :
return "Excellent"
elif (any(ord(e) in range (48, 58) for e in password) and any(ord(e) in range (65, 91) for e in password)) \
or (any(ord(e) in range (65, 91) for e in password) and any(ord(e) in range (97, 123) for e in password)) \
or (any(ord(e) in range (97, 123) for e in password) and any(ord(e) in range (48, 58) for e in password)) :
return "Good"
if name == " main ":
assert get password level ("12gqWW"
assert get password level ("123456"
assert get password level ("qwerty"
assert get password level ("ASDFGH"

== "To short", "To short"
== "To short", "To short"
== "To short", "To short"
== "To short", "To short"

assert get password level ("12345678") == "Weak", "Weak"
assert get password level ("QWERTYUI") == "Weak", "Weak"
assert get password level ("QWERTgwer") == "Good", "Good"
assert get password level ("QWERT1234") == "Good", "Good"
assert get password level ("qwerl234") == "Good", "Good"

(
(
(
(
()
assert get password level ("asdfghjk") == "Weak", "Weak"
()
(It
(
(
(

assert get password level ("qwl234RT") == "Excellent", "Excellent"

def get password level (password) :

if len(password) < 8:
"To short"
if password.isdigit ()
"Weak"
if any(e.isdigit ()

return
or (password.isalpha/()
return
for e in password)
for e in password) :

"Excellent"

(any (e.isdigit ()

return

if for e in password)

or (any(e.isdigit() for e in password)
or (any(e.isalpha() and e.islower ()
return "Good"
if name == "_main_":

== "To short",
get password level ("wer") == "To short",
get password level ("WERTY")

assert get password level ("123")
assert

assert == "To short",

assert get password level ("werQWE") == "To short",
assert get password level ("2wE") == "To short",
assert get password level ("12345678") == "Weak",
assert get password level ("abcdefgh") == "Weak",
assert get password level ("ABCDEFGH") == "Weak",
assert get password level ("A1234567") == "Good",
assert get password level ("al234567") == "Good",
assert get password level ("ABCDefgh") == "Good",
assert get password level ("A12345678") = "Good",
assert get password level ("abl234567") = "Good",
assert get password level ("ABCDefghI") == "Good",

assert get password level ("123ABCdef")

and password.islower())

and any(e.isalpha ()

and any(e.isalpha ()
and any(e.isalpha ()
for e in password)

= "Excellent",

Example

or (password.isalpha() and password.isupper()) :

and e.isupper() for e in password) and any(e.isalpha() and e.islower ()

\

for e in password))

and e.isupper () for e in password))

\

for e in password)):

and e.islower ()

and any (e.isalpha() and e.isupper ()

"To short passwort"
"To short passwort"

"To short passwort"
"To short passwort"

"To short passwort"

"To weak passwort"
"To weak passwort"
"To weak passwort"
"Good passwort"
"Good passwort"
"Good passwort"
"Good passwort"
"Good passwort"
"Good passwort"

"Excellent passwort"

Module unittest

unittest has been built into the Python standard library.
unittest requires that:

e You put your tests into classes as methods
e You use a series of special assertion methods in the unittest. TestCase class
instead of the built-in assert statement

Example

import unittest
from get password level import get password level

class TestGetPasswordLevel (unittest.TestCase) :

def test to short(self):
self.assertEqual (get password level ("12ggWW"), "To short")
self.assertEqual (get password level ("123456"), "To short")
self.assertEqual (get password level ("gqwerty"), "To short")
self.assertEqual (get password level ("ASDFGH"), "To short")

def test weak(self):
self.assertEqual (get password level ("12345678"), "Weak")
self.assertEqual (get password level ("asdfghjk"), "Weak")
self.assertEqual (get password level ("QWERTYUI"), "Weak")

def test good(self):
self.assertEqual (get password level ("QWERTgwer"), "Good")
self.assertEqual (get password level ("QWERT1234"), "Good")
self.assertEqual (get password level ("qwerl234"), "Good")

def test excellent (self):
self.assertEqual (get password level ("qwl234RT"), "Excellent")
if name == " main ":

unittest.main ()

Asserts types

Method
assertEqual (a, b)
assertNotEqual (a, b)
assertTrue (x)
assertFalse (x)
assertIs(a, b)
assertIsNot (a, b)
assertIsNone (x)
assertIsNotNone (x)
assertIn(a, b)
assertNotIn(a, b)
assertIsInstance(a, b)

assertNotIsInstance (a, b)

Checks that

bool (x) is True
bool (x) is False
a is b

a is not b

X 1s None

X 1s not None

a in b

a not in b
isinstance (a, b)

not isinstance (a,

b)

New in

3.1
3.1
3.1
3.1
3.1
3.1
3.2
3.2

11

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNotEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertFalse
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIs
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsNot
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsNone
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsNotNone
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIn
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNotIn
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertIsInstance
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNotIsInstance

Asserts types

Method Checks that New in

assertRaises (exc, fun, *args, **kwds) fun (*args, **kwds) raises exc

assertRaisesRegex (exc, r, fun, *args, **kwds) fun (*args, **kwds) raises exc and the 3.1
message matches regex r

assertWarns (warn, fun, *args, **kwds) fun (*args, **kwds) raises warn 3.2

assertWarnsRegex (warn, r, fun, *args, **kwds) fun (*args, **kwds) raises warn and the 3.2
message matches regex r

assertLogs (logger, level) The with block logs on logger with minimum 3.4
level

assertNoLogs (logger, level) The with block does not log on 3.10

logger with minimum level

12

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarns
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarnsRegex
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertLogs
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertNoLogs

Example

from unittest import TestCase

from unittest import main

def division(a, b):
if b ==
raise ZeroDivisionError ()
if b == 2:
raise ValueError ()
return a / b

class TestDivision (TestCase) :

def test division by zero(self):
with self.assertRaises (ZeroDivisionError)
division (1, 0)

def test division by 2(self):
with self.assertRaises (ValueError) as e:
division(1l, 2)

def test valid value (self):
self.assertEqual (division(3, 1), 3)
self.assertEqual (division (9, 3), 3)
self.assertNotEqual (division (9, 1), 8)

if name == " main ":

main ()

as e:

13

Useful links

https://realpython.com/python-testing/

https://machinelearningmastery.com/a-gentle-introduction-to-unit-testing-in-python/

https://docs.python.org/3/library/unittest.html#test-cases

14

https://realpython.com/python-testing/
https://machinelearningmastery.com/a-gentle-introduction-to-unit-testing-in-python/
https://docs.python.org/3/library/unittest.html#test-cases

