
Programming technologies
Sync, Async, Concurrency, Parallelism

Definitions

Sync vs Async

In Syncrhonous operations, the tasks are executed in sync, one after one. In asynchronous
operations, tasks may start and complete independent of each other. One async task may start
and continue running while the execution moves on to a new task. Async tasks don’t block (make
the execution wait for it’s completion) operations and usually run in the background.

Concurrency and Parallelism

Concurrency implies that two tasks make progress together. Parallelism is in fact a form of
concurrency. But parallelism is hardware dependent. For example if there’s only one core in the
CPU, two operations can’t really run in parallel. They just share time slices from the same core.
This is concurrency but not parallelism. But when we have multiple cores, we can actually run
two or more operations (depending on the number of cores) in parallel.

2

Synchronous execution

There is actually nothing
special in synchronous
execution. It just means we run
the code as usual: one thing
happens and then another
thing happens. Only one
function can run at a time and
only when it is finished,
something else is allowed to
happen.

3

import time

def step_1():
 print("Start of step 1")
 time.sleep(3)
 print("End of step 1")

def step_2():
 print("Start of step 2")
 time.sleep(5)
 print("End of step 2")

def step_3():
 print("Start of step 3")
 time.sleep(1)
 print("End of step 3")

def main():
 step_1()
 step_2()
 step_3()

if __name__ == "__main__":
 start = time.time()
 main()
 print(f"We spent {time.time()-start} s")

Asynchronous execution (async)

In async we run one block of code at a time but we cycle which block of code is
running. Your program needs to be built around async though you can call normal
(synchronous) functions from async program.

Here is a list of what you need in order to make your program async:

● Add async keyword in front of your function declarations to make them
awaitable.

● Add await keyword when you call your async functions (without it they won’t
run).

● Create tasks from the async functions you wish to start asynchronously. Also
wait for their finish.

● Call asyncio.run to start the asynchronous section of your program.

4

Asynchronous
execution (async)

5

import time
import asyncio

async def step_1():
 print("Start of step 1")
 await asyncio.sleep(3)
 print("End of step 1")

async def step_2():
 print("Start of step 2")
 await asyncio.sleep(5)
 print("End of step 2")

async def step_3():
 print("Start of step 3")
 await asyncio.sleep(1)
 print("End of step 3")

async def main():
 task_1 = asyncio.create_task(step_1())
 task_2 = asyncio.create_task(step_2())
 task_3 = asyncio.create_task(step_3())
 await asyncio.wait([task_1, task_2, task_3])

if __name__ == "__main__":
 start = time.time()
 asyncio.run(main())
 print(f"We spent {time.time()-start} s")

As we can see, we run the first block of
code in the step_1 function, then we give
the execution back to the async engine
which then ran the first block of code in the
step_2 function (while the step_1 function
was unfinished), then we give the
execution back to the async engine which
then ran the first block of code in the
step_3 function (while the step_1 and
step_2 functions were unfinished), then we
again released the execution and then the
final blocks of codes from each functions
were run.

Concurrent execution (threading)

In threading, we execute one line of code at a time but we constantly change
which line is run. This is done using threading library: we first create some
threads, start them and then wait them to finish (using join, for example).

6

Threading

7

import time
import threading

def step_1():
 print("Start of step 1")
 time.sleep(3)
 print("End of step 1")

def step_2():
 print("Start of step 2")
 time.sleep(5)
 print("End of step 2")

def step_3():
 print("Start of step 3")
 time.sleep(1)
 print("End of step 3")

def main():
 t1 = threading.Thread(target=step_1)
 t2 = threading.Thread(target=step_2)
 t3 = threading.Thread(target=step_3)

 t1.start(), t2.start(), t3.start()

 t1.join(), t2.join(), t3.join()

if __name__ == "__main__":
 start = time.time()
 main()
 print(f"We spent {time.time()-start} s")

Parallel execution (multiprocessing)

In multiprocessing we actually run multiple lines of Python code at one time. We
use multiple processes to achieve this. In order to use multiprocessing, you need
to: create processes, set them running and wait for them to finish (using join, for
example).

8

Multiprocessing

9

import time
import multiprocessing

def step_1():
 print("Start of step 1")
 time.sleep(3)
 print("End of step 1")

def step_2():
 print("Start of step 2")
 time.sleep(5)
 print("End of step 2")

def step_3():
 print("Start of step 3")
 time.sleep(1)
 print("End of step 3")

def main():
 t1 = multiprocessing.Process(target=step_1)
 t2 = multiprocessing.Process(target=step_2)
 t3 = multiprocessing.Process(target=step_3)

 t1.start(), t2.start(), t3.start()
 t1.join(), t2.join(), t3.join()

if __name__ == "__main__":
 start = time.time()
 main()
 print(f"We spent {time.time()-start} s")

Global Interpreter Lock (GIL)

The Global Interpreter Lock aka GIL was introduced to make CPython’s memory
handling easier and to allow better integrations with C (for example the
extensions). The GIL is a locking mechanism that the Python interpreter runs only
one thread at a time. That is only one thread can execute Python byte code at any
given time. This GIL makes sure that multiple threads DO NOT run in parallel.

10

11

Global Interpreter Lock (GIL)

Quick facts about the GIL:

● One thread can run at a time.
● The Python Interpreter switches between threads to allow concurrency.
● The GIL is only applicable to CPython (the defacto implementation). Other implementations like

Jython, IronPython don’t have GIL.
● GIL makes single threaded programs fast.
● For I/O bound operations, GIL usually doesn’t harm much.
● GIL makes it easy to integrate non thread safe C libraries, thansk to the GIL, we have many high

performance extensions/modules written in C.
● For CPU bound tasks, the interpreter checks between N ticks and switches threads. So one thread

does not block others.
● Many people see the GIL as a weakness. I see it as a blessing since it has made libraries like

NumPy, SciPy possible which have taken Python an unique position in the scientific communities.

12

Multithreading concept

Running several threads is similar to running several different programs
concurrently, but with the following benefits:

● Multiple threads within a process share the same data space with the main
thread and can therefore share information or communicate with each other
more easily than if they were separate processes.

● Threads sometimes called light-weight processes and they do not require
much memory overhead; they are cheaper than processes.

Multithreading is a way of achieving multitasking.

13

Thread VS Process

In computing, a process is an instance of a computer program that is being
executed. Any process has 3 basic components:

● An executable program.
● The associated data needed by the program (variables, work space, buffers,

etc.)
● The execution context of the program (State of process)

A thread is an entity within a process that can be scheduled for execution. Also, it
is the smallest unit of processing that can be performed in an OS (Operating
System). In simple words, a thread is a sequence of such instructions within a
program that can be executed independently of other code.

14

Singlethreading VS Multithreading

Multithreading: Multiple threads can
exist within one process where:

● Each thread contains its own
register set and local variables
(stored in stack).

● All threads of a process share
global variables (stored in heap)
and the program code.

Multithreading is defined as the ability
of a processor to execute multiple
threads concurrently.

15

Multithreading in Python

16

import threading

def print_cube (num):

 # function to print cube of given num

 print("Cube: {}" .format(num * num * num))

def print_square (num):

 # function to print square of given num

 print("Square: {}" .format(num * num))

if __name__ =="__main__" :

 # creating thread

 t1 = threading.Thread(target=print_square, args=(10,))

 t2 = threading.Thread(target=print_cube, args=(10,))

 # starting thread 1

 t1.start()

 # starting thread 2

 t2.start()

 # wait until thread 1 is completely executed

 t1.join()

 # wait until thread 2 is completely executed

 t2.join()

 # both threads completely executed

 print("Done!")

Multithreading in Python

17

import threading

import os

def task1():

 print("Task 1 assigned to thread: {}" .format(threading.current_thread().name))

 print("ID of process running task 1: {}" .format(os.getpid()))

def task2():

 print("Task 2 assigned to thread: {}" .format(threading.current_thread().name))

 print("ID of process running task 2: {}" .format(os.getpid()))

if __name__ == "__main__" :

 # print ID of current process

 print("ID of process running main program: {}" .format(os.getpid()))

 # print name of main thread

 print("Main thread name: {}" .format(threading.current_thread().name))

 # creating threads

 t1 = threading.Thread(target=task1, name= 't1')

 t2 = threading.Thread(target=task2, name= 't2')

 # starting threads

 t1.start()

 t2.start()

 # wait until all threads finish

 t1.join()

 t2.join()

threading.current_thread()

threading.main_thread()

Synchronization

Multithreading can help you make your programs
more efficient and responsive. However, it’s
important to be careful when working with threads
to avoid issues such as race conditions and
deadlocks.

Thread synchronization is defined as a
mechanism which ensures that two or more
concurrent threads do not simultaneously execute
some particular program segment known as
critical section.

18

Concurrent accesses to shared resource can lead to race condition.

A race condition occurs when two or more threads can access shared data and they try to change it at
the same time. As a result, the values of variables may be unpredictable and vary depending on the
timings of context switches of the processes.

Race condition example

19

import threading
global variable x
x = 0
def increment():
 """
 function to increment global variable x
 """
 global x
 x += 1
def thread_task ():
 """
 task for thread
 calls increment function 100000 times.
 """
 for _ in range(100000):
 increment()
def main_task():
 global x
 # setting global variable x as 0
 x = 0
 # creating threads
 t1 = threading.Thread(target=thread_task)
 t2 = threading.Thread(target=thread_task)
 # start threads
 t1.start()
 t2.start()
 # wait until threads finish their job
 t1.join()
 t2.join()
if __name__ == "__main__" :
 for i in range(10):
 main_task()
 print("Iteration {0}: x = {1}" .format(i,x))

Using Locks

threading module provides a Lock class to deal with the race conditions. Lock is
implemented using a Semaphore object provided by the Operating System.

A semaphore is a synchronization object that controls access by multiple
processes/threads to a common resource in a parallel programming environment.
It is simply a value in a designated place in operating system (or kernel) storage
that each process/thread can check and then change. Depending on the value
that is found, the process/thread can use the resource or will find that it is already
in use and must wait for some period before trying again. Semaphores can be
binary (0 or 1) or can have additional values. Typically, a process/thread using
semaphores checks the value and then, if it using the resource, changes the value
to reflect this so that subsequent semaphore users will know to wait.

20

Using Locks

Lock class provides following methods:

● acquire([blocking]) : To acquire a lock. A lock can be blocking or non-blocking.
○ When invoked with the blocking argument set to True (the default), thread execution is blocked

until the lock is unlocked, then lock is set to locked and return True.
○ When invoked with the blocking argument set to False, thread execution is not blocked. If lock

is unlocked, then set it to locked and return True else return False immediately.
● release() : To release a lock.

○ When the lock is locked, reset it to unlocked, and return. If any other threads are blocked
waiting for the lock to become unlocked, allow exactly one of them to proceed.

○ If lock is already unlocked, a ThreadError is raised.

21

Lock in action

22

import threading
global variable x
x = 0
def increment():
 """
 function to increment global variable x
 """
 global x
 x += 1
def thread_task (lock):
 """
 task for thread
 calls increment function 100000 times.
 """
 for _ in range(100000):
 lock.acquire()
 increment()
 lock.release()
def main_task():
 global x
 # setting global variable x as 0
 x = 0
 # creating a lock
 lock = threading.Lock()
 # creating threads
 t1 = threading.Thread(target=thread_task, args=(lock,))
 t2 = threading.Thread(target=thread_task, args=(lock,))
 # start threads
 t1.start()
 t2.start()
 # wait until threads finish their job
 t1.join()
 t2.join()
if __name__ == "__main__" :
 for i in range(10):
 main_task()
 print("Iteration {0}: x = {1}" .format(i,x))

Thread Pool

A thread pool is a collection of threads that are created in advance and can be
reused to execute multiple tasks. The concurrent.futures module in Python
provides a ThreadPoolExecutor class that makes it easy to create and manage a
thread pool.

23

Thread Pool Example

24

In this example, we define a function
worker that will run in a thread. We
create a ThreadPoolExecutor with a
maximum of 2 worker threads. We
then submit two tasks to the pool
using the submit method. The pool
manages the execution of the tasks in
its worker threads. We use the
shutdown method to wait for all tasks
to complete before the main thread
continues.

import concurrent.futures

def worker():

 print("Worker thread running")

create a thread pool with 2 threads

pool = concurrent.futures.ThreadPoolExecutor(max_workers=2)

submit tasks to the pool

pool.submit(worker)

pool.submit(worker)

wait for all tasks to complete

pool.shutdown(wait=True)

print("Main thread continuing to run")

Conclusion

Advantages:

● It doesn’t block the user. This is because threads are independent of each other.
● Better use of system resources is possible since threads execute tasks parallely.
● Enhanced performance on multi-processor machines.
● Multi-threaded servers and interactive GUIs use multithreading exclusively.

Disadvantages:

● As number of threads increase, complexity increases.
● Synchronization of shared resources (objects, data) is necessary.
● It is difficult to debug, result is sometimes unpredictable.
● Potential deadlocks which leads to starvation, i.e. some threads may not be served with a

bad design
● Constructing and synchronizing threads is CPU/memory intensive.

25

Additional example
Cafe simulation

26

27

import time

menu = {'1':{'name':'Americano', 'duration':5}, '2': {'name':'Cappuchino', 'duration':10}, '3': {'name':'Cheeseburger', 'duration':20}}

auto_increment = 0

def print_menu():
 print('Наше меню:')
 for item in menu.keys():
 print(item, '->', menu[item]['name'])

def cashier():
 while True:
 print('-'*40, '\nВільна каса')
 print_menu()
 order = input('Введіть номера замовлень через пробіл: ').split()
 global auto_increment
 auto_increment += 1
 order_id = auto_increment
 start = time.time()
 print('Ви замовили:')
 for item in order:
 print('-', menu[item]['name'])
 print('Номер вашого замовлення - ', order_id)
 print('Очикуйте...')
 for item in order:
 worker(menu[item])
 print('Ваше замовлення готове')
 print('Ви очикували: ', time.time() - start, ' секунд. Гарного дня')

def worker(option):
 print('Starting to do', option['name'])
 time.sleep(option['duration'])
 print('Finished doing')

def main():
 print('Mac is open')
 cashier()

if __name__ == '__main__':
 main()

28

import time
import asyncio

menu = {'1':{'name':'Americano', 'duration':5}, '2': {'name':'Cappuchino', 'duration':10}, '3': {'name':'Cheeseburger', 'duration':20}}

auto_increment = 0

def print_menu():
 print('Наше меню:')
 for item in menu.keys():
 print(item, '->', menu[item]['name'])

async def cashier():
 while True:
 print('-'*40, '\nВільна каса')
 print_menu()
 order = input('Введіть номера замовлень через пробіл: ').split()
 global auto_increment
 auto_increment += 1
 order_id = auto_increment
 start = time.time()
 print('Ви замовили:')
 for item in order:
 print('-', menu[item]['name'])
 print('Номер вашого замовлення - ', order_id)
 print('Очикуйте...')
 tasks = []
 for item in order:
 tasks.append(asyncio.create_task(worker(menu[item])))
 await asyncio.wait(tasks)
 print('Ваше замовлення готове')
 print('Ви очикували: ', time.time() - start, ' секунд. Гарного дня')

async def worker(option):
 print('Starting to do', option['name'])
 await asyncio.sleep(option['duration'])
 print('Finished doing', option['name'])

async def main():
 print('Mac is open')
 await cashier()

if __name__ == '__main__':
 asyncio.run(main())

29

import time
import threading

menu = {'1':{'name':'Americano', 'duration':5}, '2': {'name':'Cappuchino', 'duration':10}, '3': {'name':'Cheeseburger', 'duration':20}}

auto_increment = 0

def print_menu():
 print('Наше меню:')
 for item in menu.keys():
 print(item, '->', menu[item]['name'])

def cashier():
 while True:
 print('-'*40, '\nВільна каса')
 print_menu()
 order = input('Введіть номера замовлень через пробіл: ').split()
 global auto_increment
 auto_increment += 1
 order_id = auto_increment
 start = time.time()
 print('Ви замовили:')
 for item in order:
 print('-', menu[item]['name'])
 print('Номер вашого замовлення - ', order_id)
 print('Очикуйте...')
 tasks = []
 for item in order:
 tasks.append(threading.Thread(target=worker, args=(menu[item],)))
 for task in tasks:
 task.start()
 for task in tasks:
 task.join()
 print('Ваше замовлення готове')
 print('Ви очикували: ', time.time() - start, ' секунд. Гарного дня')

def worker(option):
 print('Starting to do', option['name'])
 time.sleep(option['duration'])
 print('Finished doing', option['name'])

def main():
 print('Mac is open')
 cashier()

if __name__ == '__main__':
 main()

30

import time
import threading

menu = {'1':{'name':'Americano', 'duration':5}, '2': {'name':'Cappuchino', 'duration':10}, '3': {'name':'Cheeseburger', 'duration':20}}

auto_increment = 0

def print_menu():
 print('Наше меню:')
 for item in menu.keys():
 print(item, '->', menu[item]['name'])

def cashier():
 while True:
 print('-'*40, '\nВільна каса')
 print_menu()
 order = input('Введіть номера замовлень через пробіл: ').split()
 global auto_increment
 auto_increment += 1
 order_id = auto_increment
 start = time.time()
 print('Ви замовили:')
 for item in order:
 print('-', menu[item]['name'])
 print('Номер вашого замовлення - ', order_id)
 print('Очикуйте...')
 tasks = []
 lock = threading.Lock()
 for item in order:
 tasks.append(threading.Thread(target=worker, args=(lock, menu[item],)))
 for task in tasks:
 task.start()
 for task in tasks:
 task.join()
 print('Ваше замовлення готове')
 print('Ви очикували: ', time.time() - start, ' секунд. Гарного дня')

def worker(lock, option):
 if option['name'] in ('Americano', 'Cappuchino'):
 lock.acquire()
 print('Starting to do', option['name'])
 time.sleep(option['duration'])
 print('Finished doing', option['name'])
 lock.release()
 else:
 print('Starting to do', option['name'])
 time.sleep(option['duration'])
 print('Finished doing', option['name'])

def main():
 print('Mac is open')
 cashier()

if __name__ == '__main__':
 main()

Useful links

https://codeguida.com/post/591

https://realpython.com/async-io-python/

https://realpython.com/python-async-features/

https://realpython.com/intro-to-python-threading/

https://realpython.com/python-concurrency/

https://realpython.com/courses/threading-python/

https://realpython.com/learning-paths/python-concurrency-parallel-programming/

31

https://codeguida.com/post/591
https://realpython.com/async-io-python/
https://realpython.com/python-async-features/
https://realpython.com/intro-to-python-threading/
https://realpython.com/python-concurrency/
https://realpython.com/courses/threading-python/
https://realpython.com/learning-paths/python-concurrency-parallel-programming/

