
Programming technologies
Iterators and Generators

Iterators and Iterables

Iterators and iterables are fundamental components of Python programming.

Python iterable and iterator are different. The main difference between them is,
iterable in Python cannot save the state of the iteration, whereas in iterators the
state of the current iteration gets saved.

Iterators power and control the iteration process, while iterables typically hold data
that you want to iterate over one value at a time.

Every iterator is also an iterable, but not every iterable is an iterator in Python.

2

Iterators and Iterables

3

Iterators

Iterators were added to Python 2.2 through PEP 234. In Python, an iterator is an object that
allows you to iterate over collections of data, such as lists, tuples, dictionaries, and sets.

Python iterators implement the iterator design pattern, which allows you to traverse a container
and access its elements. The iterator pattern decouples the iteration algorithms from container
data structures.

Iterators take responsibility for two main actions:

● Returning the data from a stream or container one item at a time
● Keeping track of the current and visited items

In summary, an iterator will yield each item or value from a collection or a stream of data while
doing all the internal bookkeeping required to maintain the state of the iteration process.

4

Examples
a = [1, 2, 3] # iterable object - have in description __iter__() method

iter_a = iter(a) # create iterator based on iterable object

print(next(iter_a)) # get 1-st item of iterator

print(next(iter_a)) # get 2-nd item of iterator

print(next(iter_a)) # get 3-rd item of iterator

print(next(iter_a)) # raise StopIteration

#-----------------------------------

a = [1, 2, 3]

for num in a:

 print(num)

#-----------------------------------

a = [1, 2, 3]

iter_a = iter(a)

for num in iter_a:

 print(num)

5

The most generic use case of a Python iterator
is to allow iteration over a stream of data or a
container data structure. Python uses iterators
under the hood to support every operation that
requires iteration, including for loops,
comprehensions, iterable unpacking, and more.

Examples
my_set = {'a', 'b', 'c'}

iter_my_set = iter(my_set)

for item in iter_my_set:

 print(item)

print(next(iter_my_set))

#---

my_set = {'a', 'b', 'c'}

iter_my_set = iter(my_set)

print(next(iter_my_set))

for item in iter_my_set:

 print(item)

6

Iterator protocol

Python iterators must implement a well-established internal structure known as the
iterator protocol. A Python object is considered an iterator when it implements
two special methods. These two methods make Python iterators work.

Method Description

.__iter__() Called to initialize the iterator. It must return an iterator object.

.__next__() Called to iterate over the iterator. It must return the next value in the
data stream. Most of the time, the body of this method looks like:
“return self”

7

Iterators raise StopIteration when all items are already iterated.

Types of Iterators

Using the two methods that make up the iterator protocol in your classes, you can
write at least three different types of custom iterators. You can have iterators that:

1. Take a stream of data and yield data items as they appear in the original data
2. Take a data stream, transform each item, and yield transformed items
3. Take no input data, generating new data as a result of some computation to

finally yield the generated items

8

Yielding the Original Data
class SequenceIterator:

 def __init__(self, sequence):

 self._sequence = sequence

 self._index = 0

 def __iter__(self):

 return self

 def __next__(self):

 if self._index < len(self._sequence):

 item = self._sequence[self._index]

 self._index += 1

 return item

 else:

 raise StopIteration

9

for item in SequenceIterator([1, 2, 3, 4]):

 print(item)

#--

sequence = SequenceIterator([1, 2, 3, 4])

Get an iterator over the data

iterator = sequence.__iter__()

while True:

 try:

 # Retrieve the next item

 item = iterator.__next__()

 except StopIteration:

 break

 else:

 # The loop's code block goes here...

 print(item)

Transforming the Input Data
class SquareIterator:

 def __init__(self, sequence):

 self._sequence = sequence

 self._index = 0

 def __iter__(self):

 return self

 def __next__(self):

 if self._index < len(self._sequence):

 square = self._sequence[self._index] ** 2

 self._index += 1

 return square

 else:

 raise StopIteration

10

for square in SquareIterator([1, 2, 3, 4, 5]):

 print(square)

Generating New Data
class Squares:
 """Yield n squared numbers from start"""
 def __init__(self, start, n):
 self.i = start
 self.n = n

 def __iter__(self):
 return self

 def __next__(self):
 while self.n > 0:
 self.n -= 1
 i = self.i
 self.i += 1
 return i ** 2
 raise StopIteration

squares_iter = Squares(1, 6)

for sq in squares_iter:

 print(sq)

11

Generating New Data
class FibonacciIterator:
 def __init__(self, stop=10):
 self._stop = stop
 self._index = 0
 self._current = 0
 self._next = 1

 def __iter__(self):
 return self

 def __next__(self):
 if self._index < self._stop:
 self._index += 1
 fib_number = self._current
 self._current, self._next = (
 self._next,
 self._current + self._next,
)
 return fib_number
 else:
 raise StopIteration

12

for fib_number in FibonacciIterator():

 print(fib_number)

Potentially Infinite Iterators
class FibonacciInfIterator:

 def __init__(self):

 self._index = 0

 self._current = 0

 self._next = 1

 def __iter__(self):

 return self

 def __next__(self):

 self._index += 1

 self._current, self._next = (self._next, self._current + self._next)

 return self._current

13

#DO NOT DO THIS IN THE CASE OF AN INFINITE ITERATOR

for fib_number in FibonacciInfIterator():

 print(fib_number)

#USE ONLY next() METHOD

fib_iter = FibonacciInfIterator()

print(next(fib_iter))

print(next(fib_iter))

print(next(fib_iter))

Inheriting from collections.abc.Iterator
from collections.abc import Iterator

class Squares(Iterator):

 """Yield n squared numbers from start"""

 def __init__(self, start, n):

 self.i = start

 self.n = n

 def __next__(self):

 while self.n > 0:

 self.n -= 1

 i = self.i

 self.i += 1

 return i ** 2

 raise StopIteration

14

The collections.abc module includes an
abstract base class (ABC) called Iterator.
You can use this ABC to create your
custom iterators quickly.

If you inherit from Iterator, then you don’t
have to write an .__iter__() method
because the superclass already provides
one with the standard implementation.
However, you do have to write your own
.__next__() method because the parent
class doesn’t provide a working
implementation.

Cases when the source changes during iteration
#example 1

lst = [1, 2, 3] # iterable object

lst_iter = iter(lst) # iterator

print(next(lst_iter)) # print 1-st value from

iterator

lst.pop() # change the source of iterator

print(lst) # print current state of list

print(next(lst_iter)) # print 2-d value from iterator

print(next(lst_iter)) # raise StopIteration

15

example 2, immutable

my_str = "abcd" # iterable immutable object

my_str_iter = iter(my_str) # iterator

print(next(my_str_iter)) # print 1-st value from iterator

my_str = "1234" # change the source of iterator

print(my_str) # print current state of string

print(next(my_str_iter)) # print 2-d value from iterator

print(next(my_str_iter)) # print 3-d value from iterator

print(next(my_str_iter)) # print 4-th value from iterator

print(next(my_str_iter)) # raise StopIteration

Cases when the source changes during iteration
example 3

my_dict = { 1: 'a', 2: 'b', 3: 'c'} # iterable object

dict_iter = iter(my_dict) # iterator

print(next(dict_iter)) # print 1-st value from iterator

del my_dict[2] # change the source of iterator

del my_dict[3] # change the source of iterator

print(my_dict) # print current state of dictionary

print(next(dict_iter)) # RuntimeError: dictionary changed size during

iteration

16

example 4

my_dict = { 1: 'a', 2: 'b', 3: 'c'} # iterable object

dict_iter = iter(my_dict) # iterator

print(next(dict_iter)) # print 1-st value from iterator

my_dict['new1'] = 99 # change the source of iterator

my_dict['new2'] = 999 # change the source of iterator

print(my_dict) # print current state of dictionary

print(next(dict_iter)) # RuntimeError: dictionary changed size during

iteration

Generators

Generator functions are special types of functions that allow you to create iterators using a
functional style. Unlike regular functions, which typically compute a value and return it to the
caller, generator functions return a generator iterator that yields a stream of data one value at a
time.

In Python, you’ll commonly use the term generators to collectively refer to two separate
concepts: the generator function and the generator iterator:

● The generator function is the function that you define using the yield statement.
● The generator iterator is what this function returns.

A generator function returns an iterator that supports the iterator protocol out of the box.
So, generators are also iterators.

17

Example
def squares(i, n):

 while n > 0:

 n -= 1

 yield i ** 2

 i += 1

18

sq_generator_next = squares(1, 6)

print(next(sq_generator_next))

print(next(sq_generator_next))

print(next(sq_generator_next))

print(next(sq_generator_next))

print(next(sq_generator_next))

print(next(sq_generator_next))

print(next(sq_generator_next)) # raise StopIteration

Using Generator Expressions to Create Iterators

These are particular types of expressions that return generator iterators. The
syntax of a generator expression is almost the same as that of a list
comprehension. You only need to turn the square brackets ([]) into parentheses

19

lst_comp = [item for item in range(10)] # List comprehension

generator_comp = (item for item in range(10)) # Generator expression

#--

generator_expression = (item for item in [1, 2, 3, 4])

for item in generator_expression:

 print(item)

Types of Generators

Like class-based iterators, generators allow you to:

1. Yield the input data as is
2. Transform the input and yield a stream of transformed data
3. Generate a new stream of data out of a known computation

20

example 1

def sequence_generator(sequence):

 for item in sequence:

 yield item

example 2

def square_generator(sequence):

 for item in sequence:

 yield item**2

example 3

def fibonacci_generator(stop=10):

 current_fib, next_fib = 0, 1

 for _ in range(0, stop):

 fib_number = current_fib

 current_fib, next_fib = (

 next_fib, current_fib + next_fib

)

 yield fib_number

Useful links

https://realpython.com/python-iterators-iterables/

https://realpython.com/introduction-to-python-generators/

https://www.w3schools.com/python/python_iterators.asp

https://www.geeksforgeeks.org/iterators-in-python/

https://www.geeksforgeeks.org/python-difference-iterable-iterator/

https://wiki.python.org/moin/Iterator

21

https://realpython.com/python-iterators-iterables/
https://realpython.com/introduction-to-python-generators/
https://www.w3schools.com/python/python_iterators.asp
https://www.geeksforgeeks.org/iterators-in-python/
https://www.geeksforgeeks.org/python-difference-iterable-iterator/
https://wiki.python.org/moin/Iterator

