
Programming technologies
Classes and Objects

Learning Goals/Objectives

Be able to read, comprehend, trace, adapt and create

Python code that:

● Define a custom class
● Create of class objects
● Encapsulation realization
● Inheritance realization
● Polymorphism realization

2

Define custom class

3

General information

Python is an object oriented programming language.
Almost everything in Python is an object, with its properties and methods.
Classes provide a means of bundling data (state) and functionality
(behavior) of entity together
Creating a new class creates a new type of object, allowing new instances of
that type to be made
Each class instance can have attributes attached to it for maintaining its
state. Class instances can also have methods (defined by its class) for
modifying its state
Class definitions, like function definitions (def statements) must be executed
before they have any effect

4

Class Definition Syntax

To create a class, use the keyword class:
class ClassName:

 <statement-1>

 .

 .

 .

 <statement-N>

Minimum Class Definition
class MyClass:

 pass

5

Class Objects

Class objects support two kinds of operations: attribute references and
instantiation.

Attribute references use the standard syntax used for all attribute references in
Python: obj.name. Valid attribute names are all the names that were in the class’s
namespace when the class object was created. So, if the class definition looked
like this:

MyClass.i and MyClass.f are valid attribute references, returning an integer
and a function object, respectively. Class attributes can also be assigned to, so
you can change the value of MyClass.i by assignment. __doc__ is also a valid
attribute, returning the docstring belonging to the class: "A simple example
class".

Class instantiation uses function notation. Just pretend that the class object is a
parameterless function that returns a new instance of the class. For example
(assuming the above class):

Creates a new instance of the class and assigns this object to the local variable x.

class MyClass:

 """A simple example class"""

 i = 12345

 def f(self):

 """some description"""

 return 'hello world'

x = MyClass()

6

Built In Class Attributes

print(MyClass.__dict__)

print(MyClass.__doc__)

print(MyClass.__name__)

…

Attribute Description

__dict__ Dictionary containing the class's namespace

__doc__ The class’s documentation string, or None if unavailable

__name__ The class name

__module__ The name of the module the class was defined in, or None if unavailable

__bases__ A possibly empty tuple containing the base classes, in the order of their occurrence in the
base class list

7

Instance Objects

An object that is created using a class is said to be an instance of that class
Class instantiation uses function notation:
Creates a new instance of the class and assigns this object to the local variable x

x = MyClass()

All instance objects contain a unique identity and type
print(id(MyClass))

x, y = MyClass(), MyClass()

print(id(x))

print(id(y))

print(type(MyClass))

print(type(x))

8

Constructors in Python

Constructors are generally used for instantiating an object. The task of constructors is to initialize(assign
values) to the data members of the class when an object of the class is created. In Python the __init__()
method is called the constructor and is always called when an object is created.
Syntax of constructor declaration :

def __init__(self):

 # body of the constructor

Types of constructors :
default constructor: The default constructor is a simple constructor which doesn’t accept any arguments. Its
definition has only one argument which is a reference to the instance being constructed.
parameterized constructor: constructor with parameters is known as parameterized constructor. The
parameterized constructor takes its first argument as a reference to the instance being constructed known as
self and the rest of the arguments are provided by the programmer.

9

Default constructor

class Person:

 # default constructor

 def __init__(self):

 self.name = "John"

 self.surname = "Doe"

 # a method for string presentation of instance

 def __str__(self):

 return self.name + " " + self.surname

creating object of the class

somebody = Person()

calling the instance method using the object obj

print(somebody)

10

Parameterized constructor

class Person:

 # parameterized constructor

 def __init__(self, name, surname):

 self.name = name

 self.surname = surname

 # a method for string presentation of instance

 def __str__(self):

 return self.name + " " + self.surname

creating object of the class

mike = Person("Mike", "Peerson")

calling the instance method using the object obj

print(mike)

11

Destructors in Python

Destructors are called when an object gets destroyed. In Python, destructors are not needed as

much as in C++ because Python has a garbage collector that handles memory management

automatically.

The __del__() method is a known as a destructor method in Python. It is called when all

references to the object have been deleted i.e when an object is garbage collected.

Syntax of destructor declaration :

def __del__(self):

 # body of destructor

Note : A reference to objects is also deleted when the object goes out of reference or when the

program ends.

12

Destructors in Python

class Employee:

 # default constructor

 def __init__(self):

 print('Employee created.')

 # Deleting (Calling destructor)

 def __del__(self):

 print('Destructor called, Employee deleted.')

obj = Employee()

del obj

13

Python’s special methods
OPERATOR FUNCTION METHOD DESCRIPTION

+ __add__(self, other) Addition

* __mul__(self, other) Multiply

- __sub__(self, other) Subtraction

== __eq__(self, other) Equal

!= __ne__(self, other) Not equal

[index] __getitem__(self, index) Index operator

in __contains__(self, value) Check membership

len __len__(self) The number of elements

str __str__(self) The string representation 14

OOP principles

- encapsulation
- inheritance
- polymorphism

15

OOP - Encapsulation

Encapsulation - Encapsulation is a mechanism of wrapping the data (data
attributes) and methods acting on the data (method attributes) together as a
single unit (class)

Encapsulation can be used to hide the class attributes (internal
representation of an object is generally hidden from view outside of the
object's definition)

By default, attributes in classes are public, which means that from anywhere
in the program we can get an attribute of an object and change it. Concept
of keeping implementation details hidden from the rest of the system is key
to object oriented design

16

Public, protected, private interfaces

In Python there are no attribute access modifiers such as public, protected
or private all attributes are public. But there is a convention to define
protected and private interfaces

Name Notation Behavior

name public Accessible from anywhere. Python attributes and
methods are public by default

_name protected Like a public member, but it shouldn’t be directly
access from outside

__name private *Accessible only in their own class

*Python allows to access or modify a variable/method that is considered private. To get
access to private variable/method used: <instance>. _< className>__<name> 17

OOP - Encapsulation

class Person:
 def __init__(self, name, age):
 self.name = name # set name
 self.age = age # set age

 def display_info(self):
 print("Name:", self.name, "\tAge:", self.age)

tom = Person("Tom", 23)
tom.name = "Spider-Man" # changes of field name
tom.age = -129 # changes of field age
tom.display_info() # Name: Spider-Man Age: -129

18

OOP - Encapsulation

class Person:
 def __init__(self, name, age):
 self.__name = name # set name
 self.__age = age # set age
 def set_age(self, age):
 if age in range(1, 150):
 self.__age = age
 else:
 print("Invalid age")
 def get_age(self):
 return self.__age
 def get_name(self):
 return self.__name
 def display_info(self):
 print("Name:", self.__name, "\tAge:", self.__age)

tom = Person("Tom", 23)
tom.__age = 43 # Field age does not change
tom.display_info() # Name: Tom Age: 23
tom.set_age(-3486) # INvalid age
tom.set_age(25)
tom.display_info() # Name: Tom Age: 25

19

Properties

A property is a special sort of class member, intermediate in functionality between
a field (or data member) and a method.
Access to protected/private attributes is achieved through property attributes.
This method involves the use of annotations that are preceded by the @ symbol.
To create a getter property, the @property annotation is placed over the property.
To create a setter property, the annotation @getter_property_name.setter is set
above the property.
Example:
@property
@<name>.setter
@<name>.deleter

20

Properties
class Person:
 def __init__(self, name, age):
 self.__name = name # set name
 self.__age = age # set age

 @property
 def age(self):
 return self.__age

 @age.setter
 def age(self, age):
 if age in range(1, 150):
 self.__age = age
 else:
 print("Invalid age")

 @property
 def name(self):
 return self.__name

 def display_info(self):
 print("Name:", self.__name, "\tage:", self.__age)

tom = Person("Tom", 23)

tom.display_info() # Name: Tom age: 23
tom.age = -3486 # Invalid age
print(tom.age) # 23
tom.age = 36
tom.display_info() # Name: Tom Age: 36

21

Inheritance

Inheritance is a form of software reuse in which you create a class that absorbs an
existing class’s data and behaviors and enhances them with new capabilities. The existing
class is called the base class (superclass), and the new class is referred to as the derived
class (subclass)

● “Inheritance is the ability to define a new class that is a modified version of an
existing class.” – Allen Downey, Think Python

● “A relationship among classes, wherein one class shares the structure or behavior
defined in one (single inheritance) or more (multiple inheritance) other classes.
Inheritance defines a “kind of” hierarchy among classes in which a subclass inherits
from one or more superclasses; a subclass typically augments or redefines the
existing structure and behavior of superclasses.” Grady Booch, Object Oriented
Design

class Subclass(Superclass):
 #definition of subclass

22

Types of Inheritance

Single inheritance
subclasses inherit the features of one superclass

Multiple inheritance
one class can have more than one superclass and inherit features from

all parent classes

Multilevel inheritance
a subclass is inherited from another subclass

23

Types of Inheritance

24

Single Inheritance

The syntax for a derived class definition looks like this:

class DerivedClassName(BaseClassName):
 <statement-1>
 .
 .
 .
 <statement-N>

● The name BaseClassName must be defined in a scope containing the derived class definition

● Execution of a derived class definition proceeds the same as for a base class. When the class object is
constructed, the base class is remembered. This is used for resolving attribute references: if a
requested attribute is not found in the class, the search proceeds to look in the base class. This rule is
applied recursively if the base class itself is derived from some other class

● DerivedClassName() creates a new instance of the class. Method references are resolved as follows:
the corresponding class attribute is searched, descending down the chain of base classes if necessary,
and the method reference is valid if this yields a function object

25

Inheritance

class Person:
 def __init__(self, name, age):
 self.__name = name # set name
 self.__age = age # set age

 @property
 def age(self):
 return self.__age

 @age.setter
 def age(self, age):
 if age in range(1, 100):
 self.__age = age
 else:
 print("Invalid age")

 @property
 def name(self):
 return self.__name

 def display_info(self):
 print("Name:", self.__name, "\tAge:", self.__age)

26

Inheritance

class Employee(Person):

 def __init__(self, name, age, company):
 Person.__init__(self, name, age)
 self.__company = company

 @property
 def company(self):
 return self.__company

 @company.setter
 def company(self, company):
 self.__company = company

 def display_info(self):
 # print("Name:", self.__name, "\tAge:", self.__age, "\tWorks in ", company)
 # Not correct, self.__name, self.__age - private fields
 print("Name:", self.name, "\tAge:", self.age, "\tWorks in ", self.__company)

tom = Employee("Tom", 23, "Google")
tom.age = 33
tom.display_info()

27

Methods overriding

● Derived classes may override methods of their base classes
● Method overriding, in object oriented programming, is a language

feature that allows a derived class to provide a specific implementation
of a method that is already provided by one of its base classes or parent
classes

● To override a method in the base class, derived class needs to define a
method of same signature

● An overriding method in a derived class may in fact want to extend
rather than simply replace the base class method of the same name.
There is a simple way to call the base class method directly: just call
BaseClassName.methodname(self, arguments)

28

Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with
multiple base classes looks like this:
class DerivedClassName(Base1, Base2, Base3, ...):
 <statement-1>
 .
 .
 .
 <statement-N>

Method Resolution Order: depth first, left to right.
Thus, if an attribute is not found in Subclass, it is searched in Superclass1,
then recursively in the classes of Superclass1, and only if it is not found there,
it is searched in Superclass2, and so on

Most of the time, single inheritance is good enough

29

The diamond problem in multiple inheritance

● The "diamond problem" is an ambiguity that arises when two
classes B and C inherit from A, and class D inherits from both B
and C. If there is a method in A that B and C have overridden, and
D does not override it, then which version of the method does D
inherit: that of B, or that of C?

● To solve the problem Python uses the list of classes to inherit from
as an ordered list (list of classes is created using the C3
linearization (or Method Resolution Order (MRO)) algorithm).

● The name C3 refers to the three important properties of the
resulting linearization:

○ a consistent extended precedence graph,
○ preservation of local precedence order,
○ fitting the monotonicity criterion.

30
More about MRO: https://www.geeksforgeeks.org/method-resolution-order-in-python-inheritance/

https://www.geeksforgeeks.org/method-resolution-order-in-python-inheritance/

The diamond problem in multiple inheritance

class A:
 def who_am_i(self):
 print ('I am a A')

class B(A):
 def who_am_i(self):
 print ('I am a B')

class C(A):
 def who_am_i(self):
 print ('I am a C')

class D(B, C):
 pass

31

>> obj D()

>> print(D.__mro__)
<class '__main__.D'>,
<class '__main__.B'>,
<class '__main__.C'>,
<class '__main__.A'>,
<class 'object'>

>> obj.who_am_i()
I am a B

The diamond problem in multiple inheritance

32

class A:
 def who_am_i(self):
 print('I am a A')
class B(A):
 def who_am_i(self):
 print('I am a B')
class C(A):
 def who_am_i(self):
 print('I am a C')
class D(B, C):
 def who_am_i(self):
 print('I am a D')
class E(C, B):
 def who_am_i(self):
 print('I am a E')
class F(D, E):
 pass

Traceback (most recent call last):
 File "main.py", line 16, in <module>
 class F(D, E):
TypeError: Cannot create a consistent method
resolution
order (MRO) for bases B, C

super()

super([type[, object or type]])

return a proxy object that delegates method calls to a parent or sibling class of type (is useful for
accessing inherited methods that have been overridden in a class)

A typical superclass call looks like this:

class B(A):
 def method(self, arg):
 super().method(arg)

super() is implemented as part of the binding process for explicit dotted attribute lookups such as
super().getitem__(name)

In a class hierarchy with single inheritance, super can be used to refer to parent classes without

naming them explicitly, thus making the code more maintainable

In a class hierarchy with multiple inheritance, super makes it possible to implement

“diamond diagrams” where multiple base classes implement the same method
33

super()
class Polygon:
 def __init__(self, no_of_sides):
 self.n = no_of_sides
 self.sides = [0 for i in range(no_of_sides)]
 def input_sides(self):
 self.sides = [float(input('Enter side ' + str(i + 1) + '
: ')) for i in range(self.n)]

class Triangle(Polygon):
 def __init__(self):
 super().__init__(3)
 # super(Triangle, self).__init__(3) is possible too
 def find_area(self):
 a, b, c = self.sides
 # calculate the semi-perimeter
 s = (a + b + c) / 2
 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
 return area

t = Triangle()
t.input_sides()
print('Area of triangle is %0.2f' % t.find_area())

34

super() class A:
 def __init__(self):
 print('start A')
 self.a = 1
 print('end A')
class B(A):
 def __init__(self):
 print('start B')
 super().__init__()
 self.b = self.a + 1
 print('end B')
class C(A):
 def __init__(self):
 print('start C')
 super().__init__()
 self.c = self.a + 1
 print('end C')
class D(B, C):
 def __init__(self, value):
 print('start D')
 super().__init__()
 self.d = self.a + self.b + self.c
 print('end D')

obj=D(5)
print(obj.a, obj.b, obj.c, obj.d, sep=';')

35

Classmethod and Staticmethod

Static methods

a static method knows nothing about
the class or instance
@staticmethod

def f(arg1, arg2, ...):

 suite

a static method does not receive the
instance or class as implicit first
argument

36

Class methods

a class method knows its class

@classmethod

def f(cls, arg1, arg2, ...):

 suite

a class method receives the class as
implicit first argument (cls)

Classmethod and Staticmethod

class Pizza:
 def __init__(self, ingredients):
 self.ingredients = ingredients

 def __str__(self):
 return 'Pizza(%s)' % str(self.ingredients)

 @classmethod
 def margherita(cls):
 return cls(['cheese', 'tomatoes'])

 @classmethod
 def prosciutto(cls):
 return cls(['cheese', 'tomatoes', 'ham', 'mushrooms'])

 @staticmethod
 def circle_area(R):
 from math import pi
 return R ** 2 * pi

print(Pizza.margherita())
print(Pizza.prosciutto())
print('Pizza area is %.2f' % Pizza.circle_area(0.15)) 37

Classmethod and Staticmethod

class Foo:
 message = "I'm Foo class"

 @classmethod
 def class_method(cls):
 print(cls.message)

 @staticmethod
 def static_method():
 print(Foo.message)

class Bar(Foo):
 message = "I'm Bar class"

Foo.class_method()
Foo.static_method()
Bar.class_method()
Bar.static_method()

38

Polymorphism

The word polymorphism means having many forms.

In programming, polymorphism means the same function name (but
different signatures) being used for different types. The key difference is the
data types and number of arguments used in function.

39

Example

A simple Python function to demonstrate

Polymorphism

def add(x, y, z = 0):

 return x + y + z

Driver code

print(add(2, 3)) // 5

print(add(2, 3, 4)) // 9

print(add("str1", " ", "str2")) // "str1 str2"

40

Example

print(len("Programiz"))

print(len(["Python", "Java", "C"]))

print(len({"Name": "John", "Address": "Nepal"}))

41

Polymorphism in OOP

Polymorphism is a very important idea in object-oriented programming.

We can use the idea of polymorphism for class methods, since different
classes in Python can have methods with the same name.

Later we can generalize calling these methods by ignoring the object we are
working with.

42

class Cat:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def info(self):
 print(f"I am a cat. My name is {self.name}. I am {self.age} years old.")

 def make_sound(self):
 print("Meow")

class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def info(self):
 print(f"I am a dog. My name is {self.name}. I am {self.age} years old.")

 def make_sound(self):
 print("Bark")

43

cat1 = Cat("Kitty", 2.5)
dog1 = Dog("Fluffy", 4)

for animal in (cat1, dog1):
 animal.make_sound()
 animal.info()
 animal.make_sound()

OUTPUT:

Meow
I am a cat. My name is Kitty. I am 2.5 years old.
Meow
Bark
I am a dog. My name is Fluffy. I am 4 years old.
Bark

44

Polymorphism in OOP

As in other programming languages, in Python, child classes can inherit
methods and attributes from their parent class. We can override some
methods and attributes specifically to match the child class, and this
behavior is known as method overriding.

Polymorphism allows us to have access to these overridden methods and
attributes that have the same name as in the parent class.

45

from math import pi

class Shape:
 def __init__(self, name):
 self.name = name

 def area(self):
 pass

 def fact(self):
 return "I am a two-dimensional shape."

 def __str__(self):
 return self.name

class Square(Shape):
 def __init__(self, length):
 super().__init__("Square")
 self.length = length

 def area(self):
 return self.length**2

 def fact(self):
 return "Squares have each angle equal to 90 degrees."

46

class Circle(Shape):
 def __init__(self, radius):
 super().__init__("Circle")
 self.radius = radius

 def area(self):
 return pi*self.radius**2

a = Square(4)
b = Circle(7)
print(b)
print(b.fact())
print(a.fact())
print(b.area())

OUTPUT:

Circle
I am a two-dimensional shape.
Squares have each angle equal to 90 degrees.
153.93804002589985

47

Abstract Base Classes

● Abstract base class is a class that has no instances. An abstract class is
written with the expectation that its concrete subclasses will add to its
structure and behavior, typically by implementing its abstract operations
Grady Booch, Object oriented analysis and design with applications

● Before a class derived from an abstract base class can be instantiated,
all abstract methods of its parent classes must be implemented by
some class in the derivation chain

● Abstract base classes complement duck typing by providing a way to
define interfaces when other techniques like hasattr() would be clumsy
or subtly wrong (for example with magic methods)

48

Abstract Base Classes

Abstract classes can be created in several ways:

● By use of the module abc which provides the infrastructure for defining
abstract base classes in Python

● In many dynamically typed languages, any class that has a method but
doesn't implement it (raise a not implemented error), can be considered
as abstract

● By inheriting from an abstract base class and not overriding all missing
features necessary to complete the class definition

49

Example
Employee, SalesPerson, Manager

50

class Employee:
 def __init__(self, name, salary):
 self.name = name
 self.salary = salary

 def setBonus(self, bonus):
 self.bonus = bonus

 def toPay(self):
 return self.salary + self.bonus

class SalesPerson(Employee):
 def __init__(self, name, salary, percent):
 super().__init__(name, salary)
 self.percent = percent

 def setBonus(self, bonus):
 if (self.percent > 200):
 self.bonus = bonus * 3
 elif(self.percent > 100):
 self.bonus = bonus * 2
 else:
 self.bonus = bonus

51

class Manager(Employee):
 def __init__(self, name, salary, clientAmount):
 super().__init__(name, salary)
 self.quantity = clientAmount

 def setBonus(self, bonus):
 if (self.quantity > 150):
 self.bonus = bonus + 1000
 elif (self.quantity > 100):
 self.bonus = bonus + 500
 else:
 self.bonus = bonus

person1 = Employee("John", 1000)
sales1 = SalesPerson("James", 800, 210)
manager1 = Manager("Paul", 1200, 170)

stuff = [person1, sales1, manager1]

for empl in stuff:
 empl.setBonus(200)

for empl in stuff:
 print(f"Name: {empl.name} Salary: {empl.salary} Bonus: {empl.bonus} Total: {empl.toPay()}")

52

