
Programming technologies
Exception Handling

Agenda

● Exceptions introduction
● Handling Exceptions
● Raising Exceptions
● User-defined Exceptions
● Assertions
● LBYL & EAFP

2

Errors and Exceptions

When a Python program meets an error, it stops the execution of the rest of
the program. An error in Python might be either an error in the syntax of an
expression or a Python exception.

An exception in Python is an incident that happens while executing a
program that causes the regular course of the program's commands to be
disrupted. When a Python code comes across a condition it can't handle, it
raises an exception. An object in Python that describes an error is called an
exception.

When a Python code throws an exception, it has two options: handle the
exception immediately or stop and quit.

3

Errors and Exceptions

• Syntax errors

Also known as parsing errors. Syntax error is an error in the syntax of a
sequence of characters or tokens that is intended to be written in a particular
programming language. The error is caused by (or at least detected at) the
token (statement) preceding the arrow ^ symbol.

• Exceptions

Also known as runtime errors. Whenever the interpreter has a problem it
notifies the user/programmer by raising an exception. By default, the
interpreter handles exceptions by stopping the program and printing an error
message. However, we can override this behavior by catching the exception.

4

Errors and Exceptions

string = "Python Exceptions"

for s in string:

 if (s != o):

 print(s)

string = "Python Exceptions"

for s in string:

 if (s != o):

 print(s)

5

Statement “try…except”

The try...except block is used to handle exceptions in Python. Here's the
syntax of try...except block:

try:
 # code that may cause exception
except:
 # code to run when exception occurs

Here, we have placed the code that might generate an exception inside the
try block. Every try block is followed by an except block.
When an exception occurs, it is caught by the except block. The except
block cannot be used without the try block.

6

Statement “try…except”

The try statement works as follows.

● First, the try clause (the statement(s) between the try and except
keywords) is executed.

● If no exception occurs, the except clause is skipped and execution of the
try statement is finished.

● If an exception occurs during execution of the try clause, the rest of the
clause is skipped. Then if its type matches the exception named after the
except keyword, the except clause is executed, and then execution
continues after the try statement.

● If an exception occurs which does not match the exception named in the
except clause, it is passed on to outer try statements; if no handler is
found, it is an unhandled exception and execution stops program with an
error.

7

Case statement

● Ignore exception
If we do nothing, the program stops. We can do this in two ways—don't use a try statement in the first place,
or don't have

● Log exception
We can write a message and let it propagate; generally this will stop the program.

● Recover from exception
We can write an except clause to do some recovery action to undo the effects of something that was only
partially completed in the try clause. We can take this a step further and wrap the try statement in a while
statement and keep retrying until it succeeds.

● Silence exception
If we do nothing (that is, pass) then processing is resumed after the try statement. This silences the
exception.

● Rewrite exception
We can raise a different exception. The original exception becomes a context for the newly-raised exception.

● Chain exception
We chain a different exception to the original exception a matching except clause in the try statement.

8

try…except

while True:

 try:

 x = int(input('Please enter a number: '))

 break

 except ValueError as error:

 print('Oops! Try again...', error, sep = '\n')

9

try…except…else

while True:

 try:

 x = input('Please enter a file name: ')

 f = open(x, 'r')

 except OSError as error:

 print ('Oops! Cannot open file. Try again...', error, sep = '\n')

 else:

 print(f'{x} has {len(f.readlines())} lines')

 f.close()

 break

10

try...except...else...finally

f = open('test.txt', 'r')

int_lines = []

i = 0

try:

 for item in f:

 int_lines.append(int(item))

 i += 1

except ValueError as error:

 print (f'Oops! {i+1}-th line in file is not Integer Number')

else:

 print(f'File hase {len(int_lines)} Integer Numbers')

finally:

 f.close()

11

Handling Multiple Exceptions

import sys

try:

 f = open('test.txt')

 s = f.readline()

 i = int(s.strip())

except OSError as err:

 print(f'OS error: {err}')

except ValueError:

 print('Could not convert data to an integer')

except:

 print('Unexpected error', sys.exc_info()[0])

 raise

12

Handling Multiple Exceptions

import sys

try:

 f = open('test.txt')

 s = f.readline()

 i = int(s.strip())

except (OSError, ValueError, RuntimeError) as err:

 print(f'Error: {err}')

13

Raising Exceptions

If a condition does not meet our criteria but is correct according to the
Python interpreter, we can intentionally raise an exception using the raise
keyword. We can use a customized exception in conjunction with the
statement.

If we wish to use raise to generate an exception when a given condition
happens, we may do so as follows:

num = [3, 4, 5, 7]

if len(num) > 3:

 raise Exception(f"Length of list must be <= 3 but is {len(num)}")

14

try:

 print(1 / 0)

except Exception as exc:

 raise RuntimeException('Something bad happened') from exc

Python Exceptions List

15

BaseException

Exception SystemExit GeneratorExit KeyboardInterrupt

Attribute
Error

Arithmetic
Error

EOF
Error

Name
Error

Lookup
Error

OS
Error

Type
Error

Value
Error

ZeroDivision
Error

Index
Error

Key
Error

FloatingPoint
Error

Overflow
Error

FileNotFound
Error

Interrupted
Error

Permission
Error

TimeOut
Error

Python Exceptions List

16

Exception All exceptions of Python have a base class.

StopIteration If the next() method returns null for an iterator, this
exception is raised.

SystemExit The sys.exit() procedure raises this value.

StandardError Excluding the StopIteration and SystemExit, this is the
base class for all Python built-in exceptions.

ArithmeticError All mathematical computation errors belong to this
base class.

OverflowError This exception is raised when a computation
surpasses the numeric data type's maximum limit.

FloatingPointError If a floating-point operation fails, this exception is
raised.

ZeroDivisionError For all numeric data types, its value is raised
whenever a number is attempted to be divided by
zero.

Python Exceptions List

17

AssertionError If the Assert statement fails, this exception is raised.

AttributeError This exception is raised if a variable reference or
assigning a value fails.

EOFError When the endpoint of the file is approached, and the
interpreter didn't get any input value by raw_input() or
input() functions, this exception is raised.

ImportError This exception is raised if using the import keyword to
import a module fails.

KeyboardInterrupt If the user interrupts the execution of a program,
generally by hitting Ctrl+C, this exception is raised.

LookupError LookupErrorBase is the base class for all search
errors.

IndexError This exception is raised when the index attempted to
be accessed is not found.

KeyError When the given key is not found in the dictionary to be
found in, this exception is raised.

Python Exceptions List

18

NameError This exception is raised when a variable isn't located in either local or global namespace.

UnboundLocalError This exception is raised when we try to access a local variable inside a function, and the variable has not
been assigned any value.

EnvironmentError All exceptions that arise beyond the Python environment have this base class.

IOError If an input or output action fails, like when using the print command or the open() function to access a file that
does not exist, this exception is raised.

SyntaxError This exception is raised whenever a syntax error occurs in our program.

IndentationError This exception was raised when we made an improper indentation.

SystemExit This exception is raised when the sys.exit() method is used to terminate the Python interpreter. The parser
exits if the situation is not addressed within the code.

TypeError This exception is raised whenever a data type-incompatible action or function is tried to be executed.

ValueError This exception is raised if the parameters for a built-in method for a particular data type are of the correct
type but have been given the wrong values.

RuntimeError This exception is raised when an error that occurred during the program's execution cannot be classified.

NotImplementedError If an abstract function that the user must define in an inherited class is not defined, this exception is raised.

User-defined Exception

● Programs may name their own exceptions by creating a new exception
class

● Exceptions should typically be derived from the Exception class, either
directly or indirectly

● Exception classes can be defined which do anything any other class can
do, but are usually kept simple, often only offering a number of attributes
that allow information about the error to be extracted by handlers for the
exception

● When creating a module that can raise several distinct errors, a common
practice is to create a base class for exceptions defined by that module,
and subclass that to create specific exception classes for different error
conditions

19

User-defined Exception

class InputError(Exception):

 """Exception raised for errors in the table/

 Attributes:

 expression -- input expression in which the error occured

 message -- explanation of the error

 """

 def __init__(self, expression, message):

 self.expression = expression

 self.message = message

x = int(input('Enter a integer number between 1 and 10: '))

try:

 if x not in range(1, 11):

 raise InputError(x, 'Invalid input entered')

except InputError as err:

 print(err)

20

The assert Statement

Python examines the adjacent expression, preferably true when it finds an
assert statement. Python throws an AssertionError exception if the result of
the expression is false.

Python uses ArgumentException, if the assertion fails, as the argument for
the AssertionError. We can use the try-except clause to catch and handle
AssertionError exceptions, but if they aren't, the program will stop, and the
Python interpreter will generate a traceback.

● Assertions are for debugging – not errors
● An assertion is conditionally raising an exception - AssertionError.
● You can choose to catch it or not, inside a try or not.
● Don’t use assert statements to guard against pieces of code that a user

shouldn’t access
21

The assert Statement

22

import sys

try:

 number = int(input('Please input a positive number less than 10: '))

 assert number > 0 and number < 10, 'Number out of range'

except ValueError:

 print('You don`t khow what a number is!')

 sys.exit(1)

except AssertionError as err:

 print(str(err))

EAFP

LBYL (Look Before You Leap)
if key in some_dict:
 return some_dict[key]
else:
 return None
do something else

EAFP (Easier to Ask for Forgiveness than Permission)
try:
 return some_dict[key]
except KeyError:
 return None
 # do something else

● Code is more readable
● Python's exceptions work fast enough
● Guard you against a race condition

23

EAFP

EAFP (Easier to Ask for Forgiveness than Permission):
• IO operations (Hard drive and Networking)
• Actions that will almost always be successful
• Database operations (when dealing with transactions and can rollback)
• Fast prototyping in a throw away environment
LBYL (Look Before You Leap):
• Irrevocable actions, or anything that may have a side effect
• Operation that may fail more times than succeed
• When an exception that needs special attention could be easily caught
beforehand

24

